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This white paper provides a detailed examination of digital twins, specifically geo-spatial and 
network digital twins, in sixth generation (6G) communication networks, with a focus on their 
benefits for connectivity and radio access networks (RAN). We outline the existing promising 
solutions that deploy geo-spatial digital twins to improve RAN performance and lay down the 
practical considerations for meaningful future research and development on this topic. 
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Digital twins in wireless networks
Digital twins are virtual, high-fidelity representations of physical systems, enabling simulation, analysis and 
optimization. While physical systems are constrained by time and space, digital twins remove these boundaries 
and augment the systems with history and future predictions. Digital twins remove spatial constraints by 
enabling remote access and monitoring physical assets from anywhere, allowing stakeholders to interact with 
and analyze the digital replica without being physically present. Digital twins can be stored over desirable 
periods of time and can be used to predict the future state of the physical twin, hence removing time 
boundaries. Digital twins are, however, constrained by digital processing capabilities and communications 
capacity, which limits them to being an abstraction of the physical system. 

These technologies are increasingly relevant due to the complexity of modern wireless networks, driven by 
5G and the anticipated evolution to 6G. In wireless communication networks, digital twins are categorized into 
geo-spatial digital twins, which model the physical environment (e.g., terrain, buildings, user distribution), and 
radio network digital twins, which mirror the network itself (e.g., base stations and RAN functions).

Geo-spatial digital twins: modeling the physical environment
The environment where a network is deployed can significantly impact its performance. In radio 
propagation, factors such as terrain, structure of objects, their mobility, and the materials present play a 
key role. In user tracking, localization and positioning, and multi-antenna beamforming, the dynamics of 
moving objects and mobile users become crucial. In radio resource management and scheduling, user-
cell associations and handovers, device-to-device networking, and multi-user beamforming, the relative 
positioning of network nodes, such as base stations and user devices, are very important.

Geo-spatial digital twins are multi-layered geographical maps and environmental data that contain a 3D 
map of the environment overlaid with information about the materials and the distribution and locations 
of objects. Other telemetry data can also be captured that can help anticipate the future dynamics of 
these objects, such as sensory information and trajectory and activity tracking.

Radio frequency (RF) digital twins are an important layer of information in this framework. Stochastic 
models of the channel, model-based approaches that solve Maxwell’s partial differential electromagnetic 
field equations, and trained neural networks (NNs) that learn to imitate RF propagation can all contribute 
to the creation of the RF coverage maps. Further development of these approaches and combining them 
into physics-informed data-driven models for accurate RF maps remains an active field of research. 
The RF raytracing tools in recent years have enjoyed advances in GPU-based acceleration and can now 
handle complex scenes and high angular resolutions in relatively short time. This provides near-real-time 
raytracing-based received power estimation that is within 10 dB root mean squared error (RMSE) gap to 
real measurement. By calibrating the radio environment parameters, such as the material properties, one 
can further improve on the accuracy of such ray tracing tools at the cost of partial measurement data

Additional layers of information could include weather conditions and forecast, and implications derived 
from calendar events and daily incidents on user and traffic distribution. By modeling the physical environment 
and utilizing AI-powered prediction tools, the uncertainty in estimating unknown parameters can be reduced, 
allowing for added determinism in service availability.
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Figure 1. Geo-spatial digital twins as multi-layered geographical maps and environmental data
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Radio network digital twins: mirroring network operations
Radio network digital twins (RNDT) represent a significant advance in the management, orchestration and 
optimization of operational networks. These virtual replicas support network automation by retrieving 
relevant, accurate, and timely data from the real network, user service requirements, and specific use 
cases. This integration allows RNDTs to evaluate hypothetical operational scenarios virtually, without 
disrupting the physical network. By simulating different scenarios, RNDTs can predict outcomes and 
optimize network performance, ensuring that changes are validated before implementation.

RNDTs can be descriptive, providing performance monitoring for network operators, data analysis, identifying 
potential issues through appropriate visualization, and behavioral, i.e., simulating network behavior and 
performing “what-if” analysis. RNDTs typically utilize various database types, with knowledge graphs 
enhancing the visualization of complex network dependencies.

By analyzing data gathered from network operations and accounting for interdependencies and correlations 
among occurrences, troubleshooting insights are derived through predictive analysis. RNDTs can then examine 
potential scenarios to identify the most likely root cause and provide operators with meaningful troubleshooting 
guidelines. Additionally, RNDTs offer a low-cost and safe environment for experimentation and personnel training.
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Integration of geo-spatial and radio network digital twins:  
a holistic architecture to site-specific RAN design
Integrating geo-spatial and network digital twins creates a comprehensive model for wireless communication 
networks. The combined benefits include improved network deployment strategies, better troubleshooting 
by understanding environmental impacts, and enhanced simulation capabilities for “what-if” analyses [2]. 
Figure 2 proposes a reference architecture assuring seamless re-use of digital twins by a diverse set of 
applications or other digital twins. This includes major building blocks identified as: 

•	 The physical world: It encompasses, besides the network functions, also the geo-spatial, enterprise, or 
industrial environments

•	 A composable digital twin framework including:

	– The radio network digital twins for network functions

	– The geo-spatial digital twins for the environment, consisting of models and a layered geo-database

•	 Digital twin-enabled applications.

Figure 2. Integration of geo-spatial digital twins and radio network digital twins
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This integration enables a host of applications in network planning, optimization, customization and 
intelligence. We will explore several of those examples in the following sections. By leveraging the multi-
layered geo-spatial digital twin, this architecture provides a comprehensive understanding of site-specific 
variations in distributions of users and network load over time and space. The radio network functions can 
be tailored to the specific needs of each site, enhancing the efficiency and performance of the network. 
Network operators can gather precise channel distribution metrics for each site or even individual segments 
within a site. Although creating detailed measurement-based knowledge about channel distribution can be 
costly, digital twins significantly reduce these costs by providing a virtual representation of the site.
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Digital twins and AI: mutually beneficial 
AI and digital twins, especially geo-spatial digital twins, create a complementary duo. AI can be used for 
generating, maintaining and interpreting digital twins while, in turn, digital twins can be used to generate 
synthetic data for training AI, forming a mutually beneficial relationship. AI-driven methodologies enable 
precise data ingestion during creation, facilitate continuous performance monitoring and recalibration for 
maintenance, and support high-fidelity rendering. AI has further shown to be instrumental in interfacing 
among digital twins and in streamlining operations and decision-making processes [3]. 

Use of synthetic data as a low-cost alternative to real data is widely practiced in designing site-specific 
RAN. Naturally, this comes with its own benefits and drawbacks. Crucially, the nature of real data is 
retrospective, thus, it covers a subset of possibilities that have happened and been recorded. In contrast, 
synthetic data allows for more explorative AI training and creates instances that are prospective with 
hypothetical and rare samples included in the set. 

Table 1. Real vs. synthetic data for training AI

Real data Synthetic data (via digital twins) 

Temporal nature Historical / retrospective Prospective / scenario-based

Coverage Limited to collected experiences Can explore rare or hypothetical cases

Bias risk Real-world biases, under-sampling Model assumptions, sim-to-real gap

Strength Grounded in actual physics or behavior Flexible, controllable, unlimited scale

Weakness Costly to collect and label Might not match reality exactly

Fidelity of digital twins and impact on benefits 
From the perspective of applications that rely on digital twins, rendering fidelity can have widely 
diverse impacts. Fidelity is mainly determined by the resolution of the 3D map and ray tracing, 
material properties, and hardware/software modeling for the network functions. As the fidelity of 
a geo-spatial digital twin increases, the cost of creating and maintaining it increases. As a result, 
the net benefit diminishes with extreme high fidelity. This emphasizes the need for investigating 
the impact of digital twin fidelity on downstream applications. 
As an example, leveraging a digital twin of the cell site to train a deep learning model for the 
compression of downlink channel state information (CSI) can substantially reduce the need for 
expensive real-world channel measurements. For such an end-goal, geometric fidelity, object 
material properties, and electromagnetic ray-tracing fidelity (quantified by the number of 
reflections) demonstrate stark difference on the accuracy of channel predictions. This is illustrated 
in figure 3, showing the sensitivity of the CSI compression/prediction model performance to the 
fidelity of the various digital twin elements. Notably, knowledge of the material EM properties 
provides marginal impact compared to ray tracing fidelity and the 3D-geometrical resolution of 
the scene [4]. 
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Figure 3. Impact of digital twin fidelity on CSI compression. The bars reflect the loss against physical world 
model as the digital twin fidelity changes, and is measured in normalized mean squared error (NMSE)
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Opportunities in radio networks
The convergence of GSDTs and RNDTs opens new dimensions in the planning, optimization, and 
autonomous operation of next-generation wireless systems. In this section, we explore the planning and 
operational opportunities brought to radio networks, thanks to such integration.

Network planning and optimization 
Radio networks are generally dimensioned statically based on the “worst case” scenario so that the 
required network and user key performance indicators (KPI) are satisfied even during busy hours. Instead, 
RNDT can model dynamic network behavior and simulate various what-if scenarios in case of some spatial 
or temporal hotspot in the network. This can be for example, 10x more users in a certain area during a 
sports event. The event can be modeled and simulated virtually in an RNDT simulator, which can predict 
outcomes with different radio resource management strategies. These can be, for example, allocating 
more frequencies, preemptively moving users to different frequency bands, changes in scheduler 
configurations, changes in beamforming and MIMO configurations, etc. The most suitable outcome can 
then be selected, and the cells can even be prepared in advance. The AI frameworks are trained to identify 
similar events in similar conditions, which can reduce reaction time in the future.

This all means that with the help of RNDT, the network can originally be planned much better to match 
with the actual needs and avoid over-dimensioning, minimizing operational costs by avoiding unnecessary 
adjustments post-deployment [5]. Furthermore, during operation the network parameters can be 
optimized continuously to maximize performance at each time and for each network area. The time 
scale for prediction-based optimization depends on the capabilities of RNDT. In some limited use cases 
with small areas (for example, one room in a factory), the optimization can happen in a very short time 
scale (seconds), while in more typical settings, the time scale could be hours or days, allowing the RNDT 
simulator to prepare an updated network configuration.

Augmenting dynamic radio network operations 
Dynamic operation of RAN functions can similarly benefit from knowledge of the site. This requires a closer 
to real-time geo-spatial digital twin, which monitors the movements and alterations in the 3D space. RAN 
functions, particularly with user location information, can leverage such near-real-time geo-spatial digital 
twins for site- and time-specific operation. In the following, we discuss a few examples of such operation 
augmentation for RAN.

Node and beam selection for users
Beam management involves aligning beams during initial access and tracking them as users move. Naïve 
strategies, like exhaustive beam searches, create significant overhead and become inefficient as array sizes 
and beam space grow. This has driven the adoption of supervised learning techniques to propose beams 
or estimate mmWave channels more efficiently.
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Figure 4. Digital 3D map of a factory is used to evaluate node and beam selection strategies for 
connected users
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Geo-spatial digital twins, augmented with user location data, can generate training data and manage 
beamforming with reduced overhead. Figure 4 illustrates how a 3D map of a factory, combined with 
network node and user location knowledge, enables RF digital twins to optimize beam selection. In 
this example, a transmission-reception point (TRP) and two beamforming repeaters provide enhanced 
coverage. Beam selection strategies vary based on objectives, such as single-user link reliability versus 
multi-user latency constraints. As factory layouts and user locations evolve, the digital twin updates to 
reëvaluate strategies, reducing operation latency by up to 50% for reliable, low-latency communication [6].

Without user location information, the RAN can predict the next best serving beam and proactively switch 
beams without waiting for measurement reports. User trajectories, shaped by roads, walkways, traffic laws, 
and social customs, can be mirrored in a geo-spatial digital twin. Supervised neural networks then learn patterns 
in users’ beam index sequences. The learned trajectories enable proactive beam switching by the RAN [7].
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Smooth inter-cell handover 
Figure 5 illustrates how RNDT improves inter-cell handover by leveraging geo-spatial digital twin data. The 
figure shows a pedestrian user’s trajectory, with path color indicating the connected cell, based on real 
measurements from a live network. Without RNDT (left), a late handover request causes signal strength 
to drop sharply for several seconds. With RNDT (right), additional information—such as building layouts, 
obstacles, line-of-sight, user waypoints, and pre-calculated signal quality estimates—enables earlier 
handover triggering, maintaining strong signal quality throughout the route. 

Figure 5. Example of how RNDT can be used to improve base station handover performance

Site-specific understanding of channel state
A critical challenge in cellular systems is proper estimation and exchange of channel state information (CSI). 
The existing compression and decompression techniques can be categorized in three approaches.

1.	 Standardized model-based encoder and decoder  
Traditionally, CSI estimation and reporting in networks like LTE and 5G rely on standardized encoder 
and decoder pairs. These systems use generic channel models, where the gNodeB transmits CSI 
reference signals (CSI-RS), and the user equipment estimates and compresses the channel state using 
standardized codecs. The compressed CSI is then reported back to the gNB for decompression. While 
effective, these methods are not site-specific, limiting performance in unique environments.

2.	 End-to-end machine learning-based solutions 
Data-driven, end-to-end machine learning solutions for CSI compression and decompression, promise 
adaptability to site-specific conditions. Standardizing such solutions poses challenges, particularly in 
ensuring interoperability across diverse user and network vendor systems [8].

3.	 Standard-compliant hybrid approach with site-specific refinement 
The third approach introduces a novel, hybrid solution that combines the robustness of standardized 
methods with the adaptability of machine learning. This method employs standard encoder and 
decoder pairs for initial CSI compression and decompression, ensuring compliance with existing 
network standards. Subsequently, a machine learning-based refinement module enhances the 
decompressed CSI using site-specific channel state knowledge [9]. 
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Figure 6. Evolution and potential of CSI compression solutions 

Data-driven
decompression

Model-based
decompression

Model-based
compression
(e.g., 3GPP Type-II)

Site-specific
data-driven
refinement

Site-specific
refinement

Decoder optionsEncoder options

Standardized model-based
encoder and decoder 

End-to-end machine 
learning-based solutions

Standard compliant 
hybrid approach with
site-specific refinement

Model-based
decompression
(e.g., 3GPP Type-II)

Data-driven
compression

Model-based
compression
(e.g., 3GPP Type-II)

Site-specific
refinement

The hybrid method offers a compelling pathway to harness site-specific information effectively while 
maintaining interoperability and nearly matching the performance of the end-to-end ML-based solution. 
This balance is crucial for realizing the full potential of site-specific channel state knowledge in both 
existing and future cellular networks.
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Enhancing localization and sensing services
Integrated sensing and communication (ISAC) systems are foundational to 6G networks but face challenges 
in radar sensing, including reduced spatial/temporal resolution, wide beam patterns, and sparse sampling. 
Traditional image processing struggles with degraded radar images, especially in urban environments 
where static scenes and clutter dominate. However, the regularity of urban environments offers an 
opportunity to leverage prior knowledge of typical objects and scene geometry. Generative AI models, such 
as generative adversarial networks (GANs), can learn these priors to enhance low-resolution radar depth 
maps into high-resolution 3D reconstructions. This generative enhancement improves object detection 
and semantic scene understanding, enabling scalable, near-real-time applications like digital twin creation 
and maintenance.

Figure 7. Radar sensing, especially in the context of ISAC, provides a low-resolution view of the world,  
and geo-spatial digital twins can help with capturing the appropriate priors, which enables generative 
super-resolution techniques to improve fidelity of the depth map
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Cellular localization often relies on fingerprinting, a technique that creates a database by mapping channel 
characteristics to specific locations, but this process demands significant human effort. Geo-spatial and 
raytracing-based RF digital twins can generate synthetic positioning data to complement or reduce the 
need for extensive real-world measurements. This can be seen as an additional layer to the multi-layered 
GSDT model of Figure 1. This synthetic data can also enhance AI/ML model training through transfer 
learning. While environmental factors (e.g., moving objects, weather, structural shifts) and hardware/radio 
variations can impact accuracy, maintaining near-real-time digital twins for fingerprinting databases may 
be computationally complex. Nevertheless, digital twins have demonstrated promising results, achieving 
sub-meter localization errors in non-line-of-sight (NLoS) locations 95% of the time [10].
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Envisioning a practical way forward
Levels of knowledge, complexity and performance benefits
With geo-spatial digital twins for wireless network design and optimization, we categorize prior knowledge 
into a hierarchy. These GSDTs integrate layers of static and dynamic information, as illustrated in figure 
1. Higher knowledge levels enable superior performance (e.g., throughput, coverage, latency), but 
complexity—and thus costs—escalates nonlinearly.

Our framework includes five practical levels (0–4), advancing in specificity, temporality, and autonomy, plus 
a theoretical upper bound:

Level 0: no prior knowledge—relies on real-time measurements or heuristics, without DTs (e.g., channel 
estimation pilots). Minimal complexity, but inefficient under variability.

Level 1: generic static knowledge—uses site-agnostic models (e.g., Rayleigh fading, uniform distributions), 
together with the real-time measurements of Level 0. Low-cost foundational gains, like basic coverage and 
capacity planning.

Level 2: site-specific static knowledge—incorporates static geo-spatial data (e.g., 3D maps, user heatmaps). 
Enables offline simulations (e.g., ray-tracing), boosting interference mitigation at moderate complexity.

Level 3: site-specific real-time knowledge—fuses live data with trends (e.g., sensor-fed user locations). 
Supports dynamic adjustments (e.g., 5G beam steering), increasing autonomy and demands.

Level 4: site-specific predictive knowledge—AI/ML predicts evolutions (e.g., mobility forecasts), with 
self-learning loops for proactive optimization (e.g., 6G resource allocation). High complexity from compute-
intensive models.

Theoretical upper bound: oracle knowledge—assumes perfect future-state foresight (e.g., exact 
trajectories), benchmarking maximum performance like Shannon limits, despite inherent uncertainties.

Figure 8. Levels of prior knowledge in the landscape of wireless network design and operation
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Advancing levels yields potential benefits, e.g., in the form of beamforming gain from Level 1 to 3 via 
enhanced modeling. However, complexity grows faster to maintain real-time monitoring (Level 3), improve 
fidelity, maintain predictive knowledge (Level 4) and to engage AI.

Conventional networks are designed and optimized at Levels 0–1, using overprovisioning or reactive fixes, 
leading to inefficiencies. Research often targets Level 4 or oracle ideals for autonomous 6G, but under-
explore deltas from Level 3 to 4 and toward the oracle highlight a critical need: quantifying marginal 
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benefits (e.g., reliability boosts) against surged costs. Intermediate levels (2–3) likely offer better cost-
benefit tradeoffs, delivering efficiency with feasible investments in sensors and analytics. The oracle level 
is essential, revealing improvement headroom. By benchmarking against it, future effort in research and 
development can be more intelligently invested. Future studies should empirically assess levels, integrating 
economic models for pragmatic digital twin adoption in evolving wireless ecosystems.

Challenges and open research problems
In the integration of geo-spatial digital twins with radio network digital twins, there remains important hurdles. 
Key challenges include data accuracy, computational demands, security/privacy risks, and implementation 
costs. Addressing these is crucial for practical deployment, particularly in dynamic wireless environments 
where geo-spatial fidelity directly impacts network performance metrics like latency and coverage.

Data accuracy and reliability

Ensuring DTs mirror real-world conditions remains a core issue. Discrepancies arise from sensor noise, 
incomplete data, or synchronization lags between physical and virtual models [11]. 

Computational requirements

As discussed earlier, real-time digital twins demand immense resources. Complex modeling, such as 
ray-tracing in 3D environments or AI-driven predictions, strains edge computing and requires 6G-level 
bandwidth for data fusion [11].

Cost and implementation

High upfront costs for sensors, software and infrastructure, plus ongoing maintenance may hinder adoption. 
Deployment complexity involves interoperability standards for geo-network integration, often lacking in 
heterogeneous systems [12]. More studies must weigh benefits against these expenses.

Takeaway and summary

Radio network digital twins (RNDTs) are a transformative innovation for optimizing radio access networks, 
combining geo-spatial digital twins with AI-driven insights to enable tailored, site-specific network design 
and operation. Key takeaways include:

1.	 AI-driven, site-specific optimization with RNDTs 
RNDTs leverage AI to create data-driven models for optimizing network performance, management, 
orchestration and energy efficiency. By utilizing site-specific data, they enable tailored radio network 
design and operation.

2.	 Potential and challenges of geo-spatial digital twins 
Geo-spatial digital twins enhance RAN performance, reduce AI training costs and energy consumption, 
and minimize decision-making overhead and latency. However, further research is needed to address 
discrepancies between digital twins and their physical counterparts.

3.	 Modular and reusable architecture 
RNDTs should be modular and reusable, with functionality exposed via APIs to support flexibility, 
interoperability and efficient resource utilization.

4.	 Cost-performance tradeoffs in RNDT implementation 
Advancing RNDTs requires evaluating the cost and complexity of operating networks at different levels 
of the 5-level model presented in this paper. Understanding these tradeoffs is key to scalable 
implementation.
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RNDTs have the potential to revolutionize RAN design, operation and management. By addressing digital-
physical discrepancies and balancing cost-performance tradeoffs, the industry can unlock their full 
promise. As research progresses, RNDTs are set to play a pivotal role in shaping intelligent, efficient and 
adaptive radio networks.

Abbreviations
6G	 Sixth generation (3GPP)

CSI	 Channel state information

CSI-RS	 CSI reference signals

GAN	 Generative adversarial network

gNB	 Next-generation node B (5G new radio base station)

ISAC	 Integrated sensing and communication

KPI	 Key performance indicator

NMSE	 Normalized mean squared error

NN	 Neural network

RAN	 Radio access network

RF	 Radio frequency

RMSE	 Root mean squared error

RNDT	 Radio network digital twins

TRP	 Transmission-reception point
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