

Enabling DER islanding protection—and more

Using a converged FAN for multiservice connections with resiliency, QoS and security

White paper

When interconnecting distributed energy resources (DERs) with electric grids, utilities need to deploy islanding protection schemes to make grid operations safe and to ensure power quality. One prevalent protection scheme is direct transfer trip (DTT)—but DTT alone is not enough. DTT needs a converged field area network (FAN) to provide multiservice connections with resiliency, QoS and security. This white paper explains how.

Contents

Safe DER interconnection with DTT	
DTT alone is not enough for islanding protection	4
The converged FAN: Key to DTT and more	5
Overview of the converged FAN	5
Utmost end-to-end resiliency for reliable communications	6
Deterministic QoS for assured data delivery	9
Any-to-any L2/L3 multiservice for efficient communications	10
Robust network defense for secure communications	10
Summary	11
Abbreviations	11

Safe DER interconnection with DTT

A confluence of energy technology innovations and government policy shift is placing immense strain on distribution grids. The continued drop in distributed energy resources (DERs) energy cost has propelled renewables to become the fastest growing source of new power capacity. Governments have increasingly committed to the ambitious goal of becoming climate neutral and in many cases have mandated aggressive adoption of green energy.

In response, utilities are striving to embrace DERs such as wind and solar for decarbonization. Utilities develop and source DERs and interconnect them with their grids. Due to the non-deterministic nature of DERs, they need continuous and intensive oversight of energy infeed at the interconnection point, the point of common coupling (PCC).

By deploying SCADA and synchrophasors at the PCC, utilities can monitor the infeed conditions (e.g., voltage, frequency, plus real and reactive power) in real time and use the information for power balancing and grid stability analysis.

In addition to grid stability, grid safety is another prime consideration. One top concern is the adverse impact brought by unintentional islanding.

Figure 1a shows a feeder circuit energized by a substation and a solar plant. If a fault occurs in Section 11, the adjacent recloser and the substation circuit breaker open to de-energize the circuit (see Figure 1b). Then, the solar plant energizes Section 12 through the PCC, creating unintentional islanding.

Unless special measures have been taken for islanded operation, this situation can cause hazards for the maintenance crew. In addition, out-of-range voltage and frequency can occur, damaging customer equipment in Section 12¹.

Figure 1a. A feeder circuit energized by DER

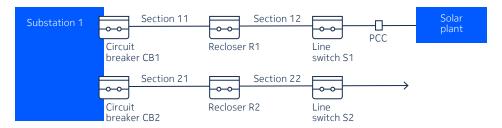
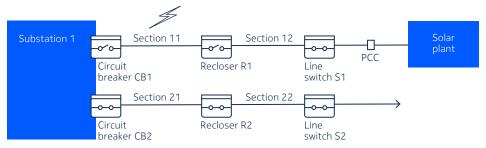



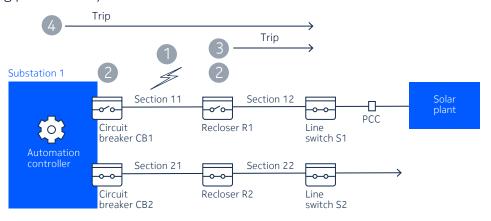
Figure 1b. A feeder circuit with fault in Section 11

To avoid these dangers, when interconnecting DERs in electric grids, utilities need to deploy islanding protection schemes to make grid operations safe and to ensure power quality. (Islanding protection is also commonly known as anti-islanding.) One prevalent protection scheme is direct transfer trip (DTT).

¹ For a detailed discussion on islanding, read IEEE Standard 1547-2018.

DTT alone is not enough for islanding protection

DTT, a communication-based system protection application, was originally conceived for high-speed tripping of generator station equipment or transmission substation circuit breakers.


When a line fault occurs, the DTT relay sends a trip command through a communication channel to its remote counterpart to protect the generator or high-voltage transformer. To prevent damage, this type of high-voltage protection action needs to occur in the range of 5 – 50 ms.

Because DTT relies extensively on communications for fast protection, it is imperative that the communication channel can deliver trip messages reliably within the delay budget. The communication channel used to be a 2-wire/4-wire telephone circuit but has been successfully migrated to private IP/MPLS mission-critical networks.

DTT is a straightforward and effective islanding protection scheme that works as follows (see Figure 2):

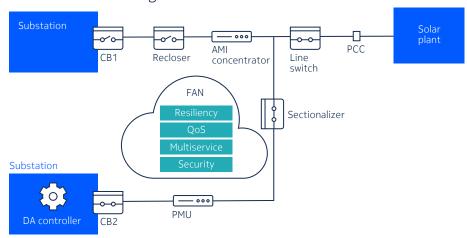
- 1. A fault occurs in Section 11.
- 2. Upon detection, the adjacent circuit breaker and recloser open to clear the fault and to de-energize.
- 3. Recloser 1 (R1) then sends trip signals to the downstream line switch S1 at the PCC. S1 then become opens and the solar plant stops energizing the connected feeder.
- 4. Trip signals can alternatively be sent from an automation controller in the substation when the substation automation controller detects that a midline recloser is open.

Figure 2. Islanding protection by DTT

As shown in Figure 2, DTT is a communication-centric protection scheme requiring that trip signals be reliably delivered all the time. As a result, it is imperative that the field area network (FAN) that connects all the field IEDs provides resilient communications.

In addition, because of the hazards caused by unintentional islanding in which the DER energizes feeder circuits through the PCC, it is crucial to trip the breakers quickly (within 2 sec as specified in IEEE1547-2018). As a result, deterministic quality of service (QoS) is another important FAN attribute.

With the level of cyber threats rising, FAN security is also essential to protect DTT communications.


Finally, as utilities make the distribution grids smarter for better oversight, higher reliability and better power quality, they harness a range of distribution automation applications, including FLISR (fault location, isolation and service restoration) and synchrophasors. The FAN needs to support more than just DTT.

To address all of these needs, utilities need a converged FAN.

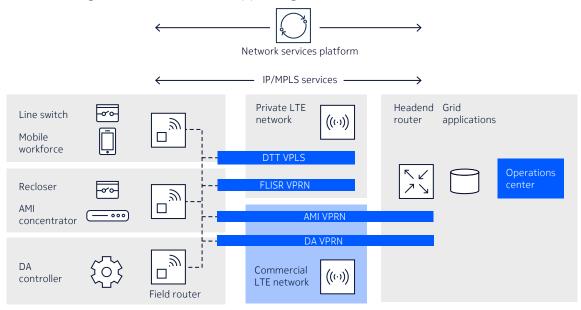
The converged FAN: Key to DTT and more

The rest of this paper provides an overview of the converged FAN architecture², then discusses its four essential attributes for DTT and other grid communications: strong multi-fault network resiliency, deterministic QoS, any-to-any multiservice, and network security (see Figure 3).

Figure 3. Essential attributes of a converged FAN

Overview of the converged FAN

The converged FAN (see Figure 4) is grounded in standards-based LTE and IP/MPLS. Harnessing an IP/MPLS field router with an LTE interface, the FAN wirelessly brings the following capabilities out to utility poles, unfibered low-voltage substation and DER sites, and connect-grid intelligent electronic devices (IEDs):


- Ubiquitous IP/MPLS services connecting a vast and growing variety of IEDs, such as automation controllers, line switches, synchrophasors and Internet of Things sensors
- Advanced Layer-3 (IP) and Layer-2 (Ethernet) VPN services to support grid communications, including Distributed Network Protocol 3 (DNP3), GOOSE and serial interfaces
- Deterministic QoS for delay-sensitive applications such as DTT
- Enhanced any-to-any multipoint connectivity in the field for decentralized/distributed grid applications that require peer-to-peer³ communications
- High mobility for assets and workers on the move
- Utmost resiliency to avoid disruptions, with fallback to commercial mobile data service
- Robust security to address a growing range of cyber-security threats.

² For a full description of the Nokia converged FAN, read the white paper "Rethinking the FAN for grid automation."

³ Peer-to-peer communications are also known as machine-to-machine (M2M) or machine type communications (MTC).

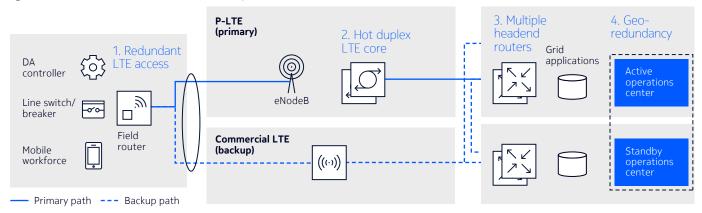
Figure 4. Nokia converged FAN architecture supporting DTT and distribution automation (DA)

The converged FAN typically runs atop a private LTE (P-LTE) network deployed and operated by utilities using dedicated or shared spectrum. When P-LTE is not an option due to spectrum unavailability or other reasons, LTE service from commercial carriers is a viable alternative that provides the same functionality. However, utilities typically prefer P-LTE because it provides complete operational and maintenance control.

The converged FAN architecture can run over both P-LTE and carrier LTE service simultaneously.

Utmost end-to-end resiliency for reliable communications

As seen in Figure 4, the scope of the FAN is more than just the LTE link between the field router and the base station (eNB). The FAN extends all the way to the headend router in the control center and data center, where operational technology (OT) applications such as Advanced Distribution Management Systems (ADMS) and grid analytics reside.


If there is a fault along the whole communication path, operators would lose oversight and control of the distribution grid and the DER status. Accordingly, the FAN needs to have full redundancy protection along the end-to-end communication path (see Figure 5).

The key protected elements in the converged FAN are:

- 1. Redundant LTE access
- 2. High availability (HA) and geo-redundant LTE packet core
- Multiple redundant headend routers
- 4. Geo-redundant operations center

Figure 5. End-to-end FAN redundancy

Redundant LTE access

The field router connects with the LTE base station (called the eNB) of the private LTE network. If the eNB fails, grid communications in the area covered by the failed eNB stop completely. Therefore, it is necessary to have highly available LTE access.

Deploying a second eNB with overlapping wireless coverage as backup is technically feasible but often is not economical for a large service area. A cost-effective alternative is to use commercial LTE service as backup⁴. When the primary private LTE network fails, the field router resorts to the backup commercial LTE network

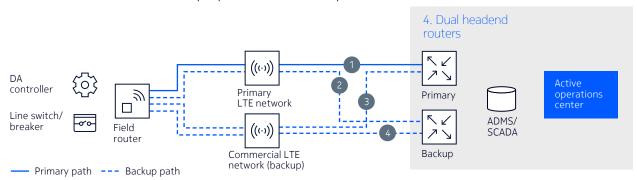
HA and geo-redundant LTE packet core

The packet core is the central gateway for LTE radio traffic, forwarding packets to grid application servers in control centers/data centers or towards other IEDs in the field. Packet core equipment failure would render the whole LTE network inoperable, stopping all mission-critical traffic and other application traffic.

Consequently, it is necessary to deploy the packet core in HA mode, with an active core and a standby core. For further resiliency and to meet disaster recovery (DR) requirements, the packet core should be deployed in a geo-redundant mode.

A typical duplex-mode implementation needs to re-establish LTE sessions with all field routers during protection switching; this process disrupts all grid communications for minutes. Furthermore, with all IEDs trying to re-establish connections at the same time, there is a lot of signaling load on the packet core, causing potential instability.

HA technology allows the active and standby cores to constantly synchronize the state information of all sessions, enabling graceful switching and eliminating any disruption to grid communications.


Multiple redundant headend routers

The headend router, located at the operations center, terminates IP/MPLS services for traffic destined to the centralized ADMS or SCADA server. It is imperative that the headend router be protected with nodal redundancy via backup headend routers located in the active operations center (see Figure 6) and in the standby operations center.

⁴ When considering commercial LTE service as a backup link, it is important to understand the SLA of and redundancy measures adopted by the commercial LTE operator.

Figure 6. Dual headend routers deployed in the active operations center

It is essential that the field router have the capability and scalability to establish multiple MP-BGP-4 (Multiprotocol Border Gateway Protocol-4) control sessions with the primary headend router and all backup headend routers via the primary or backup LTE networks.

The router monitors the operational status of the sessions. When the primary headend router fails, the router detects a status change of session and switches traffic from the primary path (Path 1 in Figure 6) to a backup path (Path 2 in Figure 6) to connect to the backup headend router.

The backup router maintains BGP routing information to the FAN routers so they can keep communicating with each other as needed for the DTT application.

If a second failure occurs in the primary LTE network, the router also detects the change of the control session with the backup headend router, then switches from Path 2 to Path 4.

Geo-redundant operations center

The operations center is the nexus of grid operations where utilities monitor, control and analyze grid operating conditions and restore outages. Because extreme weather events such as hurricanes and severe flooding are becoming more intense and more frequent, even in urban areas, it is crucial for utilities to have a standby operations center equipped with an identical network and applications environment at a different location.

One key pillar of this geo-redundancy is to extend the multi-headend routers scheme by deploying another backup headend router pair in a standby operations center (see Figure 7). When the active operations center is damaged by major incidents, the field router detects the change in the control sessions with the headend router pair in the active operations center. It then switches traffic to Path 3 to reach the standby operations center.

If the primary LTE network is also struck by the weather event, the router can switch to Path 7 or Path 8 to restore connectivity.

Multiple headend routers operations center Primary ADMS/ **SCADA** DA Primary Backup controller LTE network Line switch/ Field breaker router Standby operations center Commercial LTE Primary network (backup) ADMS/ SCADA Primary path --- Backup path Backup

Figure 7. Geo-redundant protection with multiple headend routers

Deterministic QoS for assured data delivery

To ensure that DERs stop energizing within 2 sec after an island is formed requires prioritized network delivery of trip signals over other FAN applications such as FLISR, Advanced Metering Infrastructure (AMI) and workforce mobility.

The field router combines the use of Ethernet VLAN ID (802.1q), 802.1p tag, DiffServ, MPLS traffic class and LTE QoS Class Identifier (QCI) for advanced traffic classification, queuing, buffering and shaping to ensure that trip signals are consistently delivered within the delay budget (see Figure 8).

Ethernet/VLAN

Field router

Policing, marking and queuing in buffer and shaping

GBR bearer

Non-GBR bearer

DTT

FLSIR

DSCADA

DSCADA

LTE domain

LTE domain

And queuing and shaping

GBR bearer

Non-GBR bearer

Figure 8. Deterministic QoS operations and mechanisms

Any-to-any L2/L3 multiservice for efficient communications

Traditional grid applications adopt a model of centralized intelligence in which field devices communicate with centralized application systems such as an energy management system (EMS) or a distribution management system (DMS). As processors are now more powerful, intelligence is becoming distributed and residing in an automation controller and IEDs inside substations and on poles, resulting in faster responses unlocking more grid-edge innovations. Consequently, a converged FAN needs to support multipoint machine-to-machine communications in the field.

The traffic can contain control commands using IP-based DNP3 or Ethernet-based GOOSE messages. Moreover, when supporting GOOSE-based applications, it is important to segment the Ethernet domain into multiple virtual LAN (VLAN) domains to limit the scope of Ethernet broadcasting.

The converged FAN's full IP/MPLS multiservice capability can support virtual private LAN service (VPLS) for Layer 2 VLAN service, Ethernet pseudowires for point-to-point Ethernet service, and virtual private routed network VPRN for Layer 3 IP service, covering the whole range of service profiles (see Figure 9).

Substation

Solar plant

CB1

Recloser

FAN

DTT

FLISR

Synchrophasor

AMI

DA controller

CB2

Solar plant

Solar plant

Solar plant

Solar plant

FAN

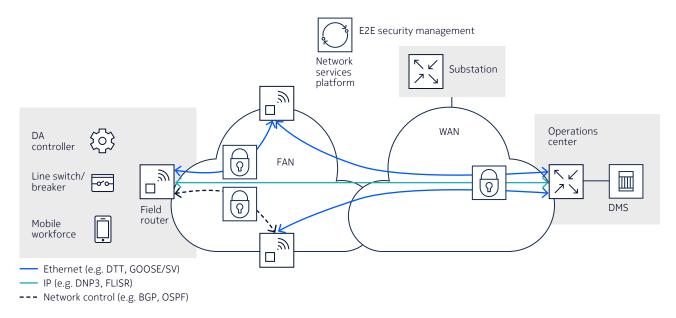
PCC

Switch

Sectionalizer

Figure 9. A multiservice converged FAN

Robust network defense for secure communications


Today's encryption mechanisms are not robust enough to protect the any-to-any communications in the converged FAN because provisioning meshed point-to-point secure tunnels is operationally challenging. The encryption mechanisms are also not optimized for Layer 2 applications because they are designed for the IP protocol.

The converged FAN has a group-based encryption approach called Network Group Encryption (NGE) technology⁵, to safeguard all traffic (including Layer 2, which is ideal to protect GOOSE traffic), Layer 3, and network control plane traffic) in the FAN as well as in the WAN (see Figure 10) on a per-application basis.

⁵ To learn more about NGE, read the Nokia white paper "Network Group Encryption."

Figure 10. NGE offers end-to-end protection

Summary

Utilities play an integral role in the world drive toward climate neutral. Decarbonizing the grid is an important step in the journey toward this goal.

DTT and other DA applications are pivotal for utilities to attain the goal of 100 percent clean energy while maintaining grid safety and improving power reliability. A highly resilient, QoS-enabled, service-centric and secure converged FAN is foundational to the green journey by providing the field communication foundation.

With a broad communications product portfolio spanning IP/MPLS, LTE/4G and 5G to packet microwave and packet optical transport, along with cyber security, Nokia has the unique capability and flexibility to help utilities transform their networks. This product portfolio is complemented by a full suite of professional services, including audit, design and engineering practices.

To learn more about Nokia for utilities, visit our Power utilities web page.

Abbreviations

ADMS	Advanced	Distribution I	Managemen [.]	t Systems
------	----------	----------------	------------------------	-----------

AMI Advanced Metering Infrastructure

BGP Border Gateway Protocol

CB circuit breaker

DA distribution automation
DER distributed energy resource

DMS distribution management system
DNP3 Distributed Network Protocol 3

DSCADA distribution supervisory control and data acquisition

DSCP Differentiated Services Code Point

DTT direct transfer trip

EMS energy management system

eNB enhanced Node B FAN field area network

FLISR fault location, isolation and service restoration

GBR Guaranteed Bit Rate

IED intelligent electronic device

IP Internet Protocol
LTE long term evolution
MP-BGP Multiprotocol BGP

MPLS multiprotocol label switchingNGE Network Group EncryptionOSPF Open Shortest Path FirstPCC Policy and Charging Control

P-LTE private LTE

PMU phasor measurement unit

QCI QoS class identifier QoS quality of service

SCADA supervisory control and data acquisition

SLA Service Level Agreement

SV Sampled Values

VLAN virtual local area network

VPLS virtual private LAN service

VPN virtual private network

VPRN virtual private routed network

WAN wide area network

About Nokia

At Nokia, we create technology that helps the world act together.

As a B2B technology innovation leader, we are pioneering the future where networks meet cloud to realize the full potential of digital in every industry.

Through networks that sense, think and act, we work with our customers and partners to create the digital services and applications of the future.

Nokia is a registered trademark of Nokia Corporation. Other product and company names mentioned herein may be trademarks or trade names of their respective owners.

© 2023 Nokia

Nokia OYJ Karakaari 7 02610 Espoo Finland

Tel. +358 (0) 10 44 88 000

Document code: (February) CID210379