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This paper discusses a framework for assessing the environmental impact of an AI system. For 
the purpose of looking at how different life cycle stages contribute to the overall environmental 
impact, Nokia mapped the AI system life cycle to the environmental life cycle assessment method. 
This ENVironmental Impact Assessment of AI systems (ENVIAA) framework shows the importance 
of evaluating each life cycle stage separately to add transparency into where the environmental 
impacts are coming from rather than using a bundling approach. We also applied the ENVIAA 
framework for high-level estimation of the impacts from low and high availability of renewable 
energy from an ICT equipment perspective. Our evaluation concludes that low availability of 
renewable energy contributes to proportionally high GHG emissions in the use stage, which are 
increased by adding AI system computational processes due to increases in energy consumption. 
For high availability of renewable energy, the raw materials, transportation, and end-of-life 
treatment of the hardware have a higher proportional impact on GHG emissions, which is not 
affected by the addition of AI system computation unless major hardware changes are needed  
for introducing AI functionality.
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Introduction 
The environmental impacts of AI systems represent a subcategory of a wider discussion on sustainable 
AI, which includes also responsible, trustworthy and ethical AI (more on these principles here [1]). This 
broader discussion aims to identify ethical, social, governance, and environmental aspects of AI systems 
with the aim to increase the benefits of developing and using AI systems and decrease the potential 
unwanted outcomes that can arise from this activity. The environmental impact discussion relates to how 
the development and use of AI systems impacts the environment, the climate and nature. 

There is a growing trend to develop and implement more and more AI solutions throughout multiple 
industries. The growth in this technology trend makes a strong case for evaluating the environmental 
aspects related to it, since both the development and use of AI systems can be a highly energy consuming 
process, which, depending on the source of energy used, can result in massive environmental impact [2, p. 
217], [3]. The growth rate of energy consumption by AI systems is estimated to be annually around 30%. 
By 2028, AI could consume more energy than the entire country of Iceland used in 2021 [4]. This speaks 
to the environmental impacts of AI systems.

Sustainability in software development can refer to two aspects: product longevity or software 
development that considers its environmental, social and economic implications [5].  By developing 
software with sustainability in mind, we can expand the sustainability impact related to the use of it. The 
main focus of this paper is looking at sustainability from the point of view of the environmental impact of 
the full life cycle, including production and use of AI systems. This viewpoint is often called environmentally 
sustainable AI for its consideration of the environmental impacts of AI systems.

Alternately, there is an “AI for sustainability” viewpoint, defined as the application of AI systems to enable 
sustainability goals and the environmentally sustainable development of different areas and industries. 
[2, p. 214]. This includes using AI systems to reduce the unwanted environmental impacts of a function 
or process. Here AI can be used to optimize energy intensive functions and reduce the use of energy in 
the reference system or to track and reduce emissions, pollution, or other aspects that contribute to 
environmental impact. We have included some points from this viewpoint as well in this paper.

The positive sustainability outcomes that are reached through implementing AI are to be coupled with 
environmentally sustainable methods of designing and using AI systems. AI environmental considerations 
are relevant throughout the entire AI system life cycle. These environmental aspects and impacts are linked 
to the inception, design, development, deployment, operation, and retirement of the AI system. 

In this paper, we look at ways to assess the environmental impact of AI systems. We created the ENVIAA 
framework by first looking at the AI system life cycle that depicts important stages in the evolution of an AI 
system and, second, by mapping these stages onto the standardized environmental life cycle assessment 
(LCA) method. In the end, we explore the impact of two scenarios in relation to energy source, one with low 
availability of renewable energy, the other with high availability.

https://www.bell-labs.com/research-innovation/ai-software-systems/responsible-ai/#gref
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AI system life cycle
Modeling AI system life cycle
An AI system life cycle describes the evolution of the AI system and can include various important stages 
that occur throughout the life cycle of the AI system from inception to retirement. The stages mentioned 
in the AI system life cycle model can be technical processes, governance processes (such as organizational 
project enabling processes, risk management processes [6, p. 9-13], or AI ethics review stages [7, p. 4]), or 
focus on any other stages of the system’s evolution that are selected for closer evaluation. Depending on 
the intended purpose of the life cycle description, life cycles can depict different stages in different levels 
of detail. A life cycle description can include all stages from inception to retirement or a subset of these 
stages. There is a standardized general approach to AI system life cycles (ISO 5338, see [6]), but there has 
yet to be a unified AI system life cycle model that can be used to point out different elements of different 
AI systems.

Figure 1.  AI system life cycle highlighting stages where training and inference can occur
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A life cycle model can include stages such as inception, design and development, verification and 
validation, deployment, operation and monitoring, continuous validation, re-evaluation and, finally, 
retirement. These stages can be separated into further substages. For example, the design and 
development stage can include substages such as acquiring training data, data preparation, algorithm 
selection, and model training [6, pp. 22-25]. The deployment stage can be separated into metrics 
evaluation, reviews and operationalization [7, p. 4].  In this paper, our approach to the AI system life cycle 
includes the stages depicted in figure 1, which also highlights the stages where training and inference can 
occur depending on the AI system.

Training and inference
Some stages of an AI system life cycle can be linked to higher energy consumption than others. While an 
AI system life cycle model is not an environmental impact assessment method, observations of energy 
consumption can be important when looking at the environmental impacts of AI systems. This can be done 
when the energy consumption of a life cycle stage is compared to that of another. For instance, some 
interesting stages for machine learning systems involve training and inference.

For machine learning systems, training can refer to the process model training. Depending on the system, 
this can mean using the training data to establish internal representations or to identify underlying 
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functions that map to wanted outcomes. For example, this can mean using training data that includes 
pictures of cats to teach the model to recognize cats from new images. Training can be linked to multiple 
stages in an AI system life cycle. It can be linked to the design and development stage of the system when 
it refers to model training on training data. Retraining can be a part of a validation stage in connection to 
model updates and the continuous monitoring of the model and its performance. This can be especially 
relevant if there are deviations from wanted outcomes or in cases of continuous learning. These processes 
can also be seen as maintenance activities that ensure the model produces wanted outcomes over time. 

Where the initial training phase relates to training data, retraining and continuous training can be linked to 
production data, which is data acquired during the operation stage of an AI system. The role of this data 
is especially important for systems with continuous learning. Depending on how an AI system life cycle 
is depicted, and, depending on the system, these additional training phases can be scattered along the 
validation, operation and/or monitoring stages of the AI life cycle.

Model training is one of the AI system life cycle substages that has been linked to needing substantial 
computing power. This is because, in some cases, a training model can require weeks’ or months’ worth 
of hardware energy consumption at a time. In addition to training time, other aspects such as the energy 
consumption of specific hardware solutions as well as model sensitivity to hyperparameters (configuration 
variables for the model) can affect the power consumption [8].

Inference in AI systems can refer to a process executed by the system or its result. This process or result 
is derived from a rule, a model, a feature or raw data [9]. Inference can be a prediction, conclusion or an 
outcome produced by the system. Examples of inference can be samples of text or images produced by 
an AI system, predictions made by a system, or when an AI system identifies or recognizes elements such 
as images from new information. From the AI system life cycle perspective, this type of inference can take 
place in the deployment, operation and monitoring stages.

Inference has also been suggested as one of the AI system life cycle stages that contributes to 
considerable amounts of energy consumption in comparison to other stages. The inference stage can 
be an ongoing process where the system continuously applies its training to new information. This can 
result in substantial energy consumption if the system is continuously in use, for example, in cases where 
the system is continuously used to produce text, images, predictions, or other outcomes. Here, energy 
consumption is linked to the power draw of the hardware during inference.

Comparing the energy consumption of training to that of inference can have varying results depending 
on the specific AI system and how it is used. For some systems, training only occurs in the design and 
development stage of the AI system life cycle. This can be followed by a significantly longer period of 
operation and monitoring where inference occurs millions of times a day, every day. In this example, 
due to a shorter one-time training time in comparison to a longer ongoing inference period, the energy 
consumption of training can be negligible in size compared to that of inference. However, in cases of 
machine learning research where more time is spent on training the system or when different periods of 
training occur throughout the life cycle of the system, the energy consumption of the training phase can 
dominate over other processes throughout the AI system life cycle. In addition to these two examples, 
where either training or inference dominates the energy consumption, it can also be a mixed case of high 
energy consumption both in training and inference due to a wide variety of factors. Therefore, a case-by-
case evaluation is needed for different AI systems focusing on the system’s design phase and intended use 
to determine energy consumption in both training and inference.
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Energy consumption
The energy consumption of an AI system, measured in kilowatt-hours (kWh), is tied to the energy required 
to power the hardware that the computation runs on. This consumption strongly depends on the stage 
of the AI system life cycle, the type of hardware that is used and how it is used [8]. It is also heavily 
dependent on the type of AI system and its intended use. One way of estimating energy consumption 
is by looking at the average power draw of key components such as CPUs, GPUs or NPUs. Key factors 
for the energy consumption are the number of parameters in a model, model efficiency, and the power 
usage effectiveness of the data center [10, p. 120]. To get a wider picture, energy calculations also need 
to include the additional energy required to support the compute infrastructure and site related energy 
consumption, including the energy used for cooling [8, p. 2]. 

An important factor about AI system hardware is that it can be dedicated solely to the functions of one 
AI system, used as shared hardware for multiple AI systems, or used for AI and other non-AI related 
computational processes simultaneously. Here, it is important to consider how much of the energy 
consumption is attributable to a specific AI system and how much is linked to other AI systems or non-AI 
related processes. To evaluate the environmental impact of a single AI system in case of shared hardware, 
an allocation of the hardware to the different systems running on it needs to be conducted, e.g. by time 
allocation estimating or measuring how many hours each of the systems is using the hardware. From the 
allocated time slot in the computing (percentage of the total running time), the dedicated share from the 
total hardware energy consumption can be calculated. However, keeping the computational resources 
available even when not in direct use has some idle mode energy consumption, although rather minimal 
compared to the active mode consumption.

Energy efficiency
An energy efficient software is one that is able to produce wanted outcomes with minimal energy 
consumption. Energy efficiency can be evaluated at different stages, for example, the development and/
or the operation stage of the software [5, p. 8]. One important aspect to leveraging energy efficient 
AI development methods is being able to measure and predict the energy consumption of specific AI 
development methods. Not only can this weigh in method selection considerations, but it also allows 
designers to determine potential upcoming environmental costs and offers options such as stopping 
model training when predefined environmental costs are being exceeded [2, pp. 216 -217]. In addition, 
accurate accounting in this area enables accurate cost-benefit analysis, raises stakeholder awareness, 
drives mitigation efforts, and helps stakeholders to achieve their environmental goals. On the other hand, 
lack of accounting methods means that designers are unaware of the impacts of their models and 
might not pursue mitigation measures [3, p. 7].

A key topic is reducing energy consumption and emissions linked to AI development. One approach is 
through re-use. The re-use or reproducibility of models and code can provide an approach for spending 
less resources on the same or similar products. This approach is enabled by researchers and developers 
releasing and sharing code and models, when it is appropriate. This can happen by releasing them to 
the community or internally within a company. It reduces the environmental impact, energy use and 
greenhouse gas (GHG) emissions of replicating resources or results [3, p. 23].

The AI community can also benefit from shared information about the most energy efficient combination 
of hardware, software and algorithms. This information can include metrics such as carbon emissions, 
energy use, runtime, or cost, and it may provide insights on whether some methods are more energy 
intensive than others or whether there are no significant differences in terms of sustainability [3, p. 17]. 
Other approaches to reducing the environmental impact linked with AI design can be found in optimized 
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code for lower energy consumption, selecting methods by considering training time, and continuous verification 
to ensure efficiency. Other solutions to reduce energy consumption are optimizing the training data to 
train with less data and scheduling retraining less frequently when the model accuracy is still good enough.

AI for sustainability
A traditional cost-benefit analysis can be based on weighing the estimated revenue generated by the model 
or AI system against, for example, the cost of electricity. Another approach can be weighing the emissions 
saved by the system against the emissions generated. This can be the case when the emissions generated 
during the lifetime of an AI embedded product are lowered by using the AI system. For example, AI systems 
can be used to reduce the energy consumption in ICT network infrastructure. By analyzing network traffic 
and the correlated energy and resource use, AI can be used to learn and predict when and where network 
service is needed and to identify unused resources that consume energy and can be switched off. This 
increases energy efficiency by optimizing energy use in active and passive network equipment. The targeted 
outcome is reduced network energy consumption while maintaining network performance.

Using AI systems to reduce energy consumption is sometimes considered separately from the energy that 
is consumed when designing and using an AI system. When AI systems are designed for increasing energy 
efficiency of the reference system, it becomes important to measure the energy consumption during the 
development and operation stages of the AI system, when possible, as well as the energy consumption of 
the process before AI is embedded for energy efficiency, and the reduced energy consumption that results 
from using the AI system. As the development of AI systems contributes to total energy consumption, 
adding AI systems to pre-existing processes should be justified from an energy consumption perspective 
as well as to assess the total benefit or environmental impact.

Summary of AI system life cycle representation
This section has looked at the AI system life cycle and its connection to the assessment of energy consumption. 
The AI system life cycle representation can be useful for describing different stages and processes included 
in the AI system’s evolution and for highlighting the more energy intensive stages of the life cycle. Depending 
on the AI system and its use case, the most energy hungry stages and processes are typically training 
and inference, and, to a lesser extent, design and development. Other stages, like retirement or 
inception, are likely to consume less energy. This is depicted in figure 2 by coloring the high energy 
consumption processes with orange.

Figure 2. AI system life cycle with high energy consumption processes marked with color
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However, the AI system life cycle does not provide enough information for assessing the full environmental 
impact of an AI system, since it merely depicts the different stages and processes within the AI system life 
cycle but does not provide methodological guidance on how to assess environmental impact. On the other 
hand, environmental impact assessment methodology for traditional software is not directly applicable 
to AI systems due to the added complexity that AI technology introduces. For this, a holistic approach is 
needed. We suggest the ENVIAA framework that incorporates an environmental life cycle assessment and 
maps to it the AI system life cycle. This will be the topic of the next section.

The environmental impact assessment  
of AI framework 
Introduction to life cycle assessment 
Environmental life cycle assessment (LCA) is an assessment method created and standardized 
for assessing the environmental impact of a product’s full life. The International Organization for 
Standardization (ISO) published standard ISO 14040 in 2006 [11]. It is a generic environmental 
assessment method to evaluate and improve environmental performance applicable for all sectors 
and products globally and used widely across a range of industries from manufacturing and chemicals 
to agriculture and transport and also includes ICT. In 2014, International Telecommunication Union 
Telecommunication Standardization Sector (ITU-T) produced and published the ICT-specific LCA standard 
L.1410 [12], which is based on ISO 14040 and adds further ICT-specific details and guidance for LCA 
practitioners. The LCA assessment method looks into four main life cycle stages: raw material acquisition, 
production, use, and end-of-life treatment, as shown in figure 3 [11].

Figure 3. Life cycle assessment stages
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The raw material acquisition stage is very specific to the material production for the hardware. This 
considers the environmental impacts from mining and extraction and further processing of the material 
into a form that can be utilized in the production of the assessed product. The production stage includes 
manufacturing a product to a sellable condition or finalizing it to be used for its intended purpose. 
Typically, manufacturing includes processing input materials and assembling parts and components to 
form the final product. The use stage covers installation and the use of the product for its intended 
purpose as well as maintenance during the product’s use. The final disposal of the product, including 
material recycling, is at the end-of-life treatment stage. Additional processes like design, transportation, 
repair, reuse, and refurbishment are included in that life cycle stage where the process takes place.

LCA method studies all processes and unit processes within the four main life cycle stages. System 
boundaries need to be clearly set to get valuable results from using the method. In the method, all 
the material and energy flows within the product life cycle are identified and associated with selected 
environmental impact category and its indicator. The most often used environmental impact category is 
global warming potential, also called climate change or greenhouse gas (GHG) emissions. 
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When looking at AI systems, the mapping of AI system life cycle stages into the LCA stages is intuitive and 
looks simple but is not straightforward. Below we present the ENVIAA framework and propose how this 
mapping can be done. Additionally, we present different scenarios for pointing out the general hot spots in 
AI systems from an environmental impact perspective.

Mapping AI system life cycle into LCA
Looking at the two models, AI system life cycle and environmental life cycle assessment, there are some 
commonalities but also use case dependent processes that are not easily mapped. Figure 4 illustrates the 
ENVIAA framework with our proposed life cycle stage mapping.

Figure 4. The ENVIAA framework
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Inference can be easily mapped to the LCA use stage, as well as re-training during use. We mapped 
continuous validation also to the LCA use stage, since it is expected to happen after the AI system is in 
operation and use. The challenge is where to map the AI training process in the LCA stages. Depending 
on the use case scenario, training could be either in production or use stage from an LCA perspective. For 
AI solutions that are sold as working products with all AI features included (e.g., a smartphone), training 
can be mapped to part of the LCA production stage. On the other hand, an AI system that is provided to 
the end customer with embedded AI functionality or capability and the customer is customizing the AI 
system for their intended use, training can be considered to belong to the LCA use stage. For the sake of 
general applicability of this framework, we mapped training across LCA production and use stages. This 
use case dependent mapping leads to ambiguity in embodied environmental impact, which in LCA means 
environmental impact from all other life cycle stages except the use stage. Another alternative for mapping 
training would have been to map it either to LCA production or use stage, thus fixing the applicability of 
this framework to only those use cases which comply.

Impact from energy consumption
Now that we have mapped the AI life cycle stages and processes to the environmental LCA methodology 
stages, we can start to look at the GHG emissions from AI systems. The GHG emissions from the AI 
system’s computational part can be assessed by looking at the emissions linked to energy consumption. 
These emissions originate from the production of the energy that powers the AI system. Different energy 
sources contribute to different levels of emissions with fossil fuels contributing to significantly higher 
emission levels than renewable energy sources [13, p. 19].
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GHG emissions for an AI system can come from multiple processes in the AI system life cycle. When looking 
at the emissions linked to the AI system development stage, an important role is played by the energy 
consumption, training time and frequency, and the carbon intensity of the energy in use [3, p. 39]. As there 
are many data points to look at, it is also important to notice that one can severely over or underestimate 
energy use and related carbon emissions when extrapolating from partial information [3, p. 15]. 

When all means to reduce the energy consumption of the AI system have been taken (examples discussed 
above), the GHG emissions related to the development and use of AI systems can be further reduced 
through utilizing energy with lower GHG emissions. Cloud-providers located in regions with low carbon 
intensity energy can help lower the emissions associated with the AI system. The carbon intensity of the 
region or cloud-provider is tied to the energy production method that is used. Here, moving model training 
to regions with low carbon intensity can reduce the emissions associated with developing the system. 
This approach can be further supported with statistical information on the emissions associated with 
different cloud provider regions [3, p. 8]. Regional carbon intensity gives the average value for all energy 
consumption in that region. More accurate impact can be calculated when the actual energy source in the 
consumption site is known and used in the environmental impact assessment. In addition, there might be 
cases where there is a carbon intensity difference between daytime and nighttime energy use. In these 
cases, scheduling training during low carbon intensity time, e.g., in the daytime with solar energy, would 
lower contribution to GHG emissions [3, p. 12]. 

Additional environmental impacts of AI systems come from the life cycle of the hardware and components 
that enable computation. This additional impact includes the energy use and emissions from hardware raw 
material acquisition, manufacturing, use, as well as end of life treatment [3, p. 4].

Embodied environmental impact of AI systems
The embodied emissions are full life cycle emissions of a product excluding use stage emissions, so in 
general everything associated with manufacturing, transportation and end of life treatment. One study 
suggests that embodied emissions of AI systems are becoming dominant in the full life cycle emissions 
[14]. That suggestion assumes that model training contributes to embodied emissions. Another study 
concludes that in the future embodied emissions from hardware manufacturing will become the major 
source of GHG emissions [15]. That study assumes that data centers use only renewable energy, while 
hardware manufacturing would use only partly renewable energy. As shown by these examples, there is no 
common approach on how to communicate conclusions about embodied emissions. For that reason, it 
would always be good to report transparently the study’s assumptions together with its conclusions.

To overcome different interpretations of embodied environmental impact, we propose to keep the impact 
from AI system development and initial training separate from hardware manufacturing and to report 
environmental impact from training in the LCA production stage separate from the embodied 
environmental impact, especially in cases when training expands beyond development and validation 
stages. By doing so, we should enable more transparent environmental impact assessment and better see 
the hot spots and areas for improvement from an environmental impact perspective.

Impact from energy source
When considering GHG emissions from an AI system, the energy source and emission factors related to it 
play major roles. When using 100% renewable energy, the impact from energy consumption is minimized. 
In that case, even the energy hungry processes in AI cause only low GHG emissions. As companies are more 
and more moving to renewable energy in their operations, many also request their suppliers to move to 
renewable energy, thus reducing GHG emissions in the whole value chain—expanding also to hardware 
manufacturing and raw material production. The question that remains is whether the energy production 
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can provide enough renewable energy for all due to the ever-increasing demand and intermittent 
availability of these energy sources.

Currently, there is not enough renewable energy available to satisfy all global energy demand, and it is not 
easily available 24/7, e.g., due to the intermittency of sun light or wind. Therefore, we consider next two 
extreme example scenarios: 1) when there is little or no renewable energy available and 2) when 100% 
renewable energy is available for all energy needs. The reality today and for the near future lies between these 
extremes with roughly 20-30% renewable energy available as a global average [16], [17], [18] and unevenly 
distributed. As a third example scenario, we explore below a case of environmental impact screening.

Scenario 1: Low availability of renewable energy
For typical ICT equipment, use stage energy consumption dominates the total lifetime environmental impact 
over the embodied emissions, when relatively low levels of renewable energy are available. Figure 5 shows an 
example of GHG emission shares in different life cycle stages based on the product LCA of typical configurations 
for mobile, fixed and core optic network products using the global average energy emission factor.

Figure 5. An example showing operator’s network products’ share of GHG emissions in different life cycle 
stages [19]
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When AI system computation is added, it becomes important to look at the most energy hungry aspects 
of the AI system, which are typically training and/or inference. The ENVIAA framework, introduced earlier 
for the life cycle stage mapping exercise, showcases how these AI stages can be mapped to the LCA use 
stage and partly overlap with the production stage, adding to the total energy consumption. At the same 
time, they increase the proportional share of the use and production stages even more from the above 
mentioned 89-95% and 5-10%. 

In cases of low availability of renewable energy sources, it becomes important to assess the additional 
energy consumption added by the implementation of AI systems. When considering positive or negative 
environmental impact compared to the reference system without AI functionalities, the addition of the 
AI system should be justified by a total benefit analysis to cover the additional environmental impact, 
especially for use cases where energy saving is targeted by introducing AI functionality into the product.
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Scenario 2: High availability of renewable energy
The GHG emissions from the energy use will be minimal when 100% renewable energy is used both 
in product manufacturing and use stage. This expands also to the impact from the AI computational 
processes. This would be an ideal case for AI when we would not need to worry about the energy 
consumption of the AI system either in training or in inference processes. In this exceptional case, the 
environmental impact from the raw materials, transportation, and end-of-life treatment of the product’s 
hardware will have the biggest impact in the GHG emissions. Targeting 100% renewable energy in the 
whole value chain will leave emissions from the materials and transportation as the main source of GHG 
emissions. These are mostly hardware related and, therefore, the AI impact on top of the hardware does 
not increase emissions, unless a major hardware update is needed due to the introduction of the AI 
functionality. Even in this ideal case, we still need to consider the environmental impact from building the 
supporting energy infrastructure for the unlimited renewable energy generation and distribution.

Scenario 3: Environmental impact screening
A more realistic example of the use of the ENVIAA framework is screening for the main environmental 
impact and planning actions to reduce it. Let’s take as an example the environmental impact from energy 
consumption. The assessment of energy consumption during different AI processes and life cycle stages, 
together with the related emission factors, gives us hot spots with major environmental impact, for which 
relevant mitigation actions can be planned. If a long training process is one of the hot spots, this process 
could be moved to a location where more renewable energy or energy with lower carbon intensity is 
available. Other actions could be shortening the training time, if feasible, and/or scheduling training for a 
time or season when energy with lower carbon intensity is available.

Other environmental impacts than GHG emissions
Current discussions on AI systems’ environmental impact mostly focus on GHG emissions as an indicator of 
the global warming potential, sometimes called “climate change”. The main focus in this paper has also been 
on GHG emissions. However, there are many other environmental impact categories. The environmental LCA 
method provides indicators also for other environmental impacts from a product, such as land use, water 
use and resource depletion. For AI, the main impacts outside of GHG emissions come from raw material 
extraction and production required for data center infrastructure, computing hardware and energy 
generation. More studies and discussions are needed on these other environmental impacts in the future.

The physical material used both in hardware manufacturing and energy generation consumes resources 
from the Earth. At the end of life, waste from electrical and electronic equipment, called e-waste, creates 
pollution. To overcome these challenges, substitute materials are being introduced that have fewer 
environmental impacts and new refining and production processes are being explored. Circularity is being 
introduced to reduce e-waste and recover materials that otherwise would need to be extracted from 
the ground. Recycled material is becoming more available as industry adopts and governments mandate 
circular economy practices, although more progress is needed in all these areas.
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Conclusions
This paper looks at ways to assess the environmental impact of AI systems. We introduced the ENVIAA 
framework by first looking at the AI system life cycle that depicts important stages in the evolution of an AI 
system, and second, by mapping these stages onto the environmental life cycle assessment (LCA) method. 
In assessing the AI system life cycle, it is suggested that, within the AI system, training and inference are 
the most important stages where energy consumption is concerned. In the ENVIAA framework, we suggest 
separating the environmental impact of the AI system development and initial training from that of the 
hardware manufacturing process in embodied emissions. This adds transparency and helps clarify the 
most important hot spots and areas for improvement from an environmental impact perspective. 

The ENVIAA framework can be used also for high-level estimations. We explored two simplified example 
scenarios in relation to energy sources. In the first scenario, it is concluded that during low availability of 
renewable energy, the use stage of the product contributes the most to the environmental impact. This 
high impact is increased with the addition of AI system computation and possibly expanded to training 
(depending on the use case) due to the increased energy consumption. A second scenario is assessed with 
high availability of renewable energy. Here, it is suggested that the environmental impact from the raw 
materials, transportation, and end-of-life treatment of the product have the biggest impact that is not 
increased by the addition of AI system computation, unless major component and material enhancements 
are needed due to AI functionality.

While AI for sustainability can enable reduction of energy consumption of the reference system, for example, 
using AI systems to increase energy efficiency, we suggest that the addition of AI systems should be done 
mindfully by checking AI system full life cycle environmental impact. 

Abbreviations
AI	 Artificial intelligence

CPU	 Central processing unit

ENVIAA	 Environmental impact assessment of AI systems

ICT	 Information and communication technology

GHG	 Greenhouse gas

GPU	 Graphical processing unit

ISO	 International Organization for Standardization 

ITU-T	 International Telecommunication Union - Telecommunication Standardization Sector

LCA	 Life cycle assessment

NPU	 Neural processing unit



14 White paper
A transparent and standards-based way to assess the environmental impact of AI systems

References 
[1]	 Nokia, “Responsible AI,” Nokia Bell Labs, 2024. Online:https://www.bell-labs.com/research-

innovation/ai-software-systems/responsible-ai/

[2] 	 Van Wynsberghe, A., “Sustainable AI: AI for sustainability and the sustainability of AI.” AI and Ethics 
1(3), pp. 213-218, 2021. Online: https://link.springer.com/article/10.1007/s43681-021-00043-6

[3] 	 Henderson, P. et al, “Towards the systematic reporting of the energy and carbon footprints of 
machine learning,” The Journal of Machine Learning Research 21(1), pp. 10039-81, 2020. Online: 
https://jmlr.org/papers/volume21/20-312/20-312.pdf

[4] 	 Ammanath, B., “How to manage AI’s energy demand — today and in the future,” World Economic 
Forum, Apr 2024. Online: https://www.weforum.org/agenda/2024/04/how-to-manage-ais-energy-
demand-today-tomorrow-and-in-the-future/

[5] 	 Haider, W. et al, “Factors influencing sustainability aspects in crowdsourced software development: 
a systematic literature review.” Journal of Software: Evolution and Process, 36(6), pp. e2630, 2023. 
Online: https://doi.org/10.1002/smr.2630

[6] 	 International Organization for Standardization, “Information technology — Artificial intelligence 
— AI system life cycle processes,” ISO Standard No. 5338, 2023. Online: https://www.iso.org/
standard/81118.html

[7] 	 De Silva, D. and Alahakoon, D., “An artificial intelligence life cycle: From conception to production,” 
Patterns 3(6), Jun 2022. Online: https://doi.org/10.1016/j.patter.2022.100489

[8] 	 Strubell, E. et al, “Energy and Policy Considerations for Modern Deep Learning Research,” 
Proceedings of the AAAI Conference on Artificial Intelligence, 34(09), pp. 13693-13696.  
Online: https://doi.org/10.1609/aaai.v34i09.7123 

[9] 	 International Organization for Standardization, “Information technology, Artificial intelligence — 
Artificial intelligence concepts and terminology,” ISO Standard No. 22989:2022), Jul 2022.  
Online: https://www.iso.org/standard/74296.html

[10] 	 Maslej, N. et al, “AI Index 2023 Annual Report,” Stanford University, Institute for Human-Centered 
AI, Apr 2023. Online: https://aiindex.stanford.edu/wp-content/uploads/2023/04/HAI_AI-Index-
Report_2023.pdf

[11] 	 International Organization for Standardization, “Environmental management — Life cycle 
assessment — Principles and framework,” ISO 14040:2006, Jul 2006. Online: https://www.iso.org/
standard/37456.html

[12]	 ITU-T, “Methodology for environmental life cycle assessments of information and communication 
technology goods, networks and services,” Recommendation ITU-T L.1410, Dec 2014. Online: 
https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=12207

[13]	 Weisser, D., “A Guide to Life-Cycle Greenhouse Gas (GHG) Emissions from Electric Supply 
Technologies,” Energy 32(9), pp. 1543-1559, Sep 2007. Online: https://doi.org/10.1016/j.
energy.2007.01.008

[14]	 Wu, C.-J., et al, “Sustainable AI: Environmental Implications, Challenges and Opportunities,”  
Jan 2022. Online: https://doi.org/10.48550/arXiv.2111.00364

https://www.bell-labs.com/research-innovation/ai-software-systems/responsible-ai/
https://www.bell-labs.com/research-innovation/ai-software-systems/responsible-ai/
https://link.springer.com/article/10.1007/s43681-021-00043-6
https://jmlr.org/papers/volume21/20-312/20-312.pdf
https://www.weforum.org/agenda/2024/04/how-to-manage-ais-energy-demand-today-tomorrow-and-in-the-future/
https://www.weforum.org/agenda/2024/04/how-to-manage-ais-energy-demand-today-tomorrow-and-in-the-future/
https://doi.org/10.1002/smr.2630
https://www.iso.org/standard/81118.html
https://www.iso.org/standard/81118.html
https://doi.org/10.1016/j.patter.2022.100489
https://doi.org/10.1609/aaai.v34i09.7123
https://www.iso.org/standard/74296.html
https://aiindex.stanford.edu/wp-content/uploads/2023/04/HAI_AI-Index-Report_2023.pdf
https://aiindex.stanford.edu/wp-content/uploads/2023/04/HAI_AI-Index-Report_2023.pdf
https://www.iso.org/standard/37456.html
https://www.iso.org/standard/37456.html
https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=12207
https://doi.org/10.1016/j.energy.2007.01.008
https://doi.org/10.1016/j.energy.2007.01.008
https://doi.org/10.48550/arXiv.2111.00364


About Nokia

At Nokia, we create technology that helps the world act together.

As a B2B technology innovation leader, we are pioneering networks that sense, think and act by leveraging our work across mobile, fixed and cloud networks. In addition, we 
create value with intellectual property and long-term research, led by the award-winning Nokia Bell Labs.

Service providers, enterprises and partners worldwide trust Nokia to deliver secure, reliable and sustainable networks today – and work with us to create the digital services 
and applications of the future.

Nokia is a registered trademark of Nokia Corporation. Other product and company names mentioned herein may be trademarks or trade names of their respective owners. 

© 2024 Nokia

Nokia OYJ 
Karakaari 7 
02610 Espoo 
Finland 
Tel. +358 (0) 10 44 88 000

Document code: CID214115 (August)

[15]	 Gupta, U., et al, “Chasing carbon: The elusive environmental footprint of computing,” 2021 IEEE 
International Symposium on High-Performance Computer Architecture (HPCA), Seoul, Korea (South), 
Feb-Mar 2021, pp. 854-867. Online: https://ieeexplore.ieee.org/document/9407142

[16] 	 IEA, “Pathways for the energy mix,” World Energy Outlook 2023, IEA, 2023. Online: https://www.iea.
org/reports/world-energy-outlook-2023

[17]	 Ritchie, H. and Rosado, P., “Energy Mix,” Our World in Data, 2020.  
Online: https://ourworldindata.org/energy-mix

[18]	 Enerdata, “Share of renewables in electricity production,” World Energy & Climate Statistics – 
Yearbook 2024, 2024. Online: https://yearbook.enerdata.net/renewables/renewable-in-electricity-
production-share.html

[19]	 Nokia, “People and Planet report,” Nokia web site, 2020. Online: https://www.nokia.com/sites/
default/files/2021-04/Nokia_People_and_Planet_Report_2020.pdf

https://ieeexplore.ieee.org/document/9407142
https://www.iea.org/reports/world-energy-outlook-2023
https://www.iea.org/reports/world-energy-outlook-2023
https://ourworldindata.org/energy-mix
https://yearbook.enerdata.net/renewables/renewable-in-electricity-production-share.html
https://yearbook.enerdata.net/renewables/renewable-in-electricity-production-share.html
https://www.nokia.com/sites/default/files/2021-04/Nokia_People_and_Planet_Report_2020.pdf
https://www.nokia.com/sites/default/files/2021-04/Nokia_People_and_Planet_Report_2020.pdf

