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This white paper examines how Artificial Intelligence (AI) and Machine Learning (ML) are driving 
the evolution of autonomous broadband networks. It explores a “sense, think, act” framework 
that enables more data-driven decision-making. Key topics include anomaly detection, digital 
twin networks, and closed-loop automation for intent fulfillment and assurance. The paper 
also discusses how AI/ML enhances operational efficiency, enables predictive maintenance, 
and improves human-machine interaction in network management. By showcasing current 
applications and future possibilities, it demonstrates AI/ML’s transformative impact on broadband 
networks, positioning them to meet evolving digital communication demands.
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Introduction
In the 21st century, digital communication technology has become an integral part of society, reshaping 
the way we live, work, and interact. As this digitalization pervades our daily life, we depend increasingly on 
broadband. For households, a reliable high-speed internet connection is essential for modern life, while 
for enterprises, it is vital for operational efficiency and competitiveness. Therefore, the broadband market 
has become more challenging: the variety of services and applications has grown tremendously, and 
consumers are more aware of their needs. 

The growing complexity of network management necessitates a higher level of automation to streamline 
operations, minimize human error, enhance productivity, and optimize service quality. Modern software-
defined access networks introduce data-driven decision-making and closed-loop automation. The 
data-driven decision-making is enabled by innovative push-based streaming telemetry and always-on 
network configuration in the cloud. Closed loop automation is essential to intent-based networking (IBN) 
and the evolution to autonomous networks. IBN enables networks to translate high-level intents into 
actionable network configurations and to continuously adjust to maintain desired outcomes effectively. 
More information is available in the application note “Software-defined access networks” and white paper 
“Broadband network telemetry”. The Internet Research Task Force defines IBN in RFC 9315 while TM Forum 
offers a technical architecture for autonomous networks in IG1230. 

Networks that sense, think and act
Artificial intelligence (AI) and machine learning (ML) are the foundation for autonomous networks and data-
driven decision-making. AI is defined as any human-created device or system capable of perceiving its 
environment (sense), making decisions (think), and taking actions (act) to maximize its chances of achieving 
a goal. Within AI, machine learning serves as a sub-category that enables computational systems to learn 
tasks without explicit programming. ML achieves this by recognizing patterns in data and autonomously 
learning useful features from it. 

AI/ML-based decision-making can be supported by a digital twin network (DTN): a virtual representation  
of a physical network. Such a digital replica is created with direct linkage to operation data from the 
physical network and is synchronized during the entire life cycle. Because the DTN reflects the real-time 
state and behavior of the physical network, it can be utilized for analyzing, diagnosing, and controlling the 
physical counterpart.

A network domain controller implements the “sense-think-act” framework (see Figure 1), which is a 
conceptual model used to describe the fundamental processes involved in self-managed autonomous 
networks. The addition of AI/ML-driven control enables dynamic traffic management, data-driven capacity 
planning, predictive maintenance, and automatic fault resolution. 

Intent fulfillment  
The first step in operating an autonomous network is for the operator to ingest intent (outer control loop 
1), which means that the intent is obtained through interactions with the operator. The human-machine 
interaction can be made easy and natural by using large language models (LLM) making intent ingestion 
accessible to a wider range of users beyond expert network engineers. Additionally, intent can even be 
learned automatically, for example, from traffic patterns or the device used (sense). 

https://onestore.nokia.com/asset/201522?_gl=1*147mxmm*_gcl_au*MTM0NTg0NDU0NC4xNzE4ODY2MzY2*_ga*MTc3OTU2MTYyNy4xNzE4MTgwOTY5*_ga_D6GE5QF247*MTcxOTMyNzQ5Ni4zOS4wLjE3MTkzMjc0OTcuMC4wLjA.&_ga=2.139724595.1647661226.1719298359-1779561627.1718180969
https://onestore.nokia.com/asset/213261?_gl=1*jcbzn4*_gcl_au*MTM0NTg0NDU0NC4xNzE4ODY2MzY2*_ga*MTc3OTU2MTYyNy4xNzE4MTgwOTY5*_ga_D6GE5QF247*MTcxOTMyNzQ5Ni4zOS4xLjE3MTkzMjc1NTkuMC4wLjA.&_ga=2.228208413.1647661226.1719298359-1779561627.1718180969
https://datatracker.ietf.org/doc/rfc9315/
https://www.tmforum.org/resources/standard/ig1230-autonomous-networks-technical-architecture-v1-1-1/
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Suppose, for example, that the operator aims to set up a multi-megabit internet service for a specific user. 
The controller translates this abstract intent into concrete configuration. Before applying the configuration 
to the network (act), the controller may use the digital twin network to validate the feasibility of the intent 
(think). This feasibility depends on the network capability and usage. If the intent is not feasible, the DTN 
can suggest an alternative intent.

Figure 1. Sense-think-act framework implemented in a network domain controller. The inner control loop 
(orange) is fast-paced and fully automated. The two outer control loops extend to the user space and may 
require human intervention.
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Once the service is configured, the network monitors the service (inner control loop and outer control 
loop 1). The access node continuously streams network data to the controller using push-based 
telemetry. Upon data collection, the controller starts the data analysis using anomaly detection and 
pattern recognition techniques (sense). If a problem is identified and prioritized, the controller determines 
autonomously the appropriate corrective action (think). The decision-making may be supported by the 
digital twin network. The corrective action may be an intent suggestion validated by the DTN (outer control 
loop 1), a network reconfiguration (inner control loop), or a repair advice to be handled by a field technician 
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(outer control loop 2). If the corrective action requires an adaptation of the network configuration, such 
a reconfiguration can immediately and automatically be applied to the network (act). Therefore, the inner 
control loop is fast-paced and implements closed-loop automation. If a field technician needs to repair a 
connectivity problem, the controller can assist using computer vision and augmented reality.

Anomaly detection – the sense part
The controller continuously analyzes the data collected from the network. This analysis allows operators to 
recognize patterns, predict trends, correlate information, detect anomalies and prioritize network events. In 
this section, we will focus on how AI/ML can help automate and improve anomaly detection in a network. A 
seemingly simple approach to anomaly detection is to define a region of normal behavior and classify any 
observation outside this region as an anomaly. However, defining such a region is challenging. Moreover, this 
region typically evolves over time. As a result, numerous anomaly detection techniques exist. 

Anomaly detection techniques can be broadly categorized into three classes: rule-based methods; 
statistical or model-based methods; and machine-learning-based methods. ML-based methods can be 
further divided into (semi-)supervised classification-based methods and unsupervised methods. In most 
scenarios, data is unlabeled, necessitating the use of unsupervised techniques, which do not rely on 
training data. Unsupervised methods are further subdivided into distance-based methods and clustering-
based methods. More information about anomaly detection can be found in the surveys [7] and [8]. In the 
remainder of the section, we focus on the application of anomaly detection in fixed networks. 

Rule-based thresholds
Rule-based (or heuristics-based) methods rely on predefined rules or thresholds to classify anomalies. In 
the context of fixed networks, a threshold crossing alarm (TCA) that is manually configured is a rule-based 
anomaly detection method. This type of TCA has drawbacks: it requires domain knowledge, manual effort, 
remains static without adaptation over time, and uses per indicator (e.g., board temperature) a network-
wide generic threshold value that isn’t adapted to the monitored object (e.g., a specific board). Model-
based techniques offer solutions to overcome these drawbacks.

Methods based on prediction models
If the data consists of a time series, then model-based techniques that fit a prediction model to the time 
series are widely used. For streaming time series, such prediction-model-based techniques can assess 
whether a data instance is an anomaly immediately upon its arrival. 

The simplest model is a fingerprinting model. This method automatically learns a threshold once at 
startup. One drawback of fingerprinting-based TCA is that the threshold remains static, failing to adjust 
to normal variations over time. To overcome this limitation, the model can be retrained using a moving-
average (MA) approach. While an MA-based TCA adapts the threshold over time, its ability to predict normal 
variation is limited.

Network metrics, like those influenced by temperature or traffic, often show daily and seasonal 
patterns, complicating the detection of real anomalies. In this case, we need an ML-based prediction 
model. Typically, this involves fitting a regression model to the time series data. We propose using a 
decomposable time series model that includes components for trend, seasonality, and holidays. This 
model can detect anomalies in real-time as new data comes in. Furthermore, since the model forecasts the 
future trend, we can use a rule-based TCA to detect an anomaly well in advance. Time-series forecasting 
can be used not only for such preventive maintenance but also for other purposes, such as capacity 
planning. Figure 2 illustrates rule-based and model-based anomaly detection.
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Figure 2. Rule-based and model-based anomaly detection. 
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Model-based anomaly detection applies to diverse network metrics such as optical signal power, board 
temperature, CPU load, and RAM usage. An anomaly in the optical signal power may be caused by a fault in 
the outside distribution network (ODN) such as a fiber bend, a pressurized fiber, a loose, dirty, or improper 
connector, or a disconnected fiber. An increasing board temperature may be caused by a dusty filter. 

Multivariate anomaly detection
An important component of a PON network is the SFP (small form-factor pluggable) transceiver at the 
OLT (optical line terminal) and ONT (optical network terminal). An SFP may degrade over time due to aging, 
connector wear, dust accumulation, high humidity, etc. To detect SFP degradation, multiple performance 
indicators are monitored: the optical power level, operating temperature, laser bias current, etc. However, 
SFPs of different vendors and types may have a different normal range for each of these metrics. 
Therefore, detecting a degraded SFP is challenging and requires machine learning. 

With access to multivariate data, the preferred anomaly detection method is based on clustering. Machine 
learning groups similar data points into clusters, where each cluster represents a distinct combination of 
vendor and type of SFP. A data point that does not fit well into the cluster that corresponds to its vendor 
and type represents a degraded SFP. Such anomaly detection enables preventive maintenance.

We may also apply multivariate anomaly detection on a larger scale, at the level of an access node or OLT. 
The complexity of an access node involves monitoring so many metrics that detecting anomalies with 
traditional univariate rule-based methods is challenging. 
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Bandwidth usage anomalies
While on average a PON has abundant capacity to support tens of users during peak hour, the introduction 
of (multi-) gigabit services has led to PONs being at risk of congestion during noticeable time periods. 
Indeed, such high-speed services are used by subscribers to download or update video games up to 
several hundreds of gigabytes; or to download complete box-sets of television programs, for offline 
viewing. Therefore, long high-speed downloads are occurring more often, and users dominating the 
bandwidth for significant time periods are more common. 

From a user’s perspective, PON congestion risk is equivalent to the probability of a failed speed test. We can 
monitor speed test success probability continuously for every PON in the network using a digital twin network 
as we explain in the next section. Rule-based TCA is used to trigger a PON alarm when the speed test success 
probability drops below, for example, 80%. PON congestion may be caused by a single user dominating the 
bandwidth. Such an anomalous bandwidth usage can be detected using rule-based TCA as well. 

Another type of bandwidth usage anomaly occurs when a user has limited bandwidth because of a 
bottleneck in the network. A bandwidth bottleneck can occur due to congestion at various locations in 
the network, for example, at the home Wi-Fi, at the PON downlink, and at the PON uplink. A bandwidth 
bottleneck can also be due to the speed limit of the service to which the user is subscribed. A bandwidth 
bottleneck anomaly can be detected by analyzing a user’s bandwidth consumption over time using a 
statistical method.

Alarm correlation
While the controller can detect anomalies, so too can the OLT and ONT. Anomalies detected in OLTs and 
ONTs are reported back to the controller as alarms. The controller can correlate equipment alarms for root 
cause analysis and fault localization. Through alarm correlation, rogue ONTs can be detected and cut  
fibers localized. 

Summary
Figure 3 maps every fixed-network anomaly that we described above to a network location.

Figure 3. Overview of potential anomalies in the fixed network.

BNG

ONT

Speed limit
bandwidth
bottleneck  

Uplink
bandwidth
bottleneck
(e.g., new
game release)    

Wifi
bandwidth
bottleneck 

PON
bandwidth
bottleneck
(e.g.,hogging
user)    

Degraded
OLT SFP

Degraded
ONT SFP

Degraded
OLT

Hogging
user (e.g.,
game
download)   

Fiber
bend 

Pressured
fiber 

Dirty, loose, or
improper connector 

Disconnected
or cut fiber 

Dusty
filter 

PON
congestion
risk  

OLT RGW Laptop

Rogue
ONT 



8 White paper
How AI/ML drives the evolution toward autonomous broadband networks

Digital twin network – the think part
The digital twin network can be utilized for analyzing, diagnosing, and controlling its physical network 
counterpart. It can improve planning decisions, validate configurations, speed up troubleshooting and 
help decide on the necessary corrective steps. In this section, we focus on the application of a digital twin 
network to improve the capacity management of a PON, both the strategic and operational aspects. 

Strategic capacity planning involves defining service tiers and split ratios, considering future traffic growth. 
Operational capacity management includes finding the optimal PON to add a new user and verifying 
whether a user can be upgraded to a higher service tier without risking PON congestion. Moreover, DTN-
based operational capacity management helps to resolve and even avoid the bandwidth usage anomalies 
described in the previous section.

Digital twin architecture
A digital twin network, a virtual representation of a physical network, is standardized in the ITU-T 
recommendation Y.3090. Figure 4 integrates the DTN architecture of Y.3090 (Figure 8-1 in the ITU-T 
recommendation) with the cognitive controller’s sense-think-act framework (shown in Figure 1) for the 
specific application of integrated PON capacity management.

Figure 4. Digital twin network (DTN) integrated in a network domain controller. 
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The digital twin network includes the three subsystems specified in Y.3090: the data repository, data 
models, and digital twin entity management. Because the DTN is integrated in the controller, for some of 
its functions required by Y.3090, the DTN relies on infrastructure provided by the controller such as the 
data collection, data repository, and interfaces. The data collection enables the real-time synchronization 
of the digital twin network with the physical network. This synchronization distinguishes a DTN from a 
traditional network simulator, enabling highly accurate data-driven capacity planning and operational 
capacity management.

https://www.itu.int/rec/T-REC-Y.3090
https://www.itu.int/rec/T-REC-Y.3090
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DTN data models
The primary goal of PON capacity management is to ensure high availability of advertised speeds. 
Therefore, the DTN predicts speed-test success probability considering the capacity of the PON 
technology, the number of users connected, the highest service tier assigned to a user, the average peak 
hour bandwidth usage, and the presence of dominant users. 

This prediction requires a representative collection of high-frequency traffic traces (with a 5-second 
sampling period), which capture the burstiness of internet traffic. Because the statistical properties 
of the internet traffic change only slowly over time as new services and applications are adopted, this 
collection of high-frequency traffic traces is needed only a few times per year (slow synchronization). The 
high-frequency traffic traces are used by the so-called “basic” model (Y.3090 terminology). This model 
simulates the PON traffic management (including traffic shaping and weighted fair queueing) to predict the 
speed-test success probability for many randomly selected PON and service configurations. 

The large collection of simulation results enables the training of a physics-informed machine learning 
model, which serves as the Y.3090 “functional” model. This ML model provides robust and fast 
generalization of the simulated data and covers the complete capacity planning space as shown in Figure 5. 
The functional model enables the prediction of speed-test success probability for every PON (represented 
by blue) based on the fast synchronization of the DTN with the physical network. The speed-test success 
probability ranges from high (above 80% = green) to low (below 80% = red).

DTN use cases and benefits
Figure 5. Screenshot of the PON Capacity Planner Altiplano application, which implements a digital twin 
network for integrated PON capacity management. The configuration pane on the left enables the what-if 
analysis. The chart on the right shows the predicted speed-test success probability.
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For strategic capacity planning, the DTN enables what-if analysis as illustrated in Figure 5. What is the 
impact if we increase the split ratio or if a (multi-) gigabit service is introduced. The DTN can also assess 
the impact of future traffic growth and of new PON technologies. DTN-based data-driven capacity planning 
is more accurate and QoE-focused than traditional capacity planning, avoiding overly conservative service 
definitions and PON configurations. In other words, the DTN enables an increase in PON utilization without 
risking more failed speed tests. 

For operational capacity management, the DTN monitors the speed-test success probability for all PONs 
in the network continuously (blue dots in Figure 5) without the need for disruptive real speed tests. In 
IBN terminology, we state the intent to keep each PON’s speed-test success probability above 80%. The 
cognitive controller verifies daily for each PON whether this intent is met. When a congestion risk alarm is 
raised, the controller may be able, in many cases, to autonomously bring the speed-test success probability 
back above 80% by smart network reconfiguration as we explain in the next section. For cases where an 
automatic resolution is not feasible, the DTN may suggest a user re-allocation or a PON technology upgrade. 
Prediction-model based anomaly detection may even identify PON congestion risks in advance.

For underutilized PONs, without a congestion risk, the DTN verifies whether adding a user to the PON or 
upgrading a user to a higher service tier is feasible without jeopardizing the required speed-test success 
probability as illustrated in Figure 5 (bottom table). Thus, the DTN enables intent validation. To minimize 
the impact on speed-test success probability, the DTN may even determine which PON to add a user to. 
The DTN may also predict the highest speed that can be offered to a user without risking PON congestion. 
In other words, the DTN also facilitates intent suggestion. 

Closed-loop automation – the act part
While anomaly detection smartens the “sensing” and the digital twin network supports the “thinking”, 
closed-loop automation enables the cognitive controller to take actions autonomously, without manual 
intervention. Closed-loop automation is directly related to closed-loop feedback control, a concept 
fundamental to control engineering, that also underpins intent-based networking as shown in Figure 6.

Figure 6. Intent life cycle (RFC 9315, Figure 1) rearranged to highlight that IBN enables closed-loop 
control.
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A closed-loop control system measures the actual output and feeds this signal back to compare it with the 
desired output. Intent-based networking implements such a closed-loop control as shown in Figure 6. The 
inner control loop corresponds to traditional closed-loop control. This fast-paced feedback loop ensures 
that the network behaves according to the intent expressed by the operator. The outer control loop feeds 
back to the user space, enabling intent optimization. While the inner control loop is fully automated, the 
outer control loop provides the (human) operator the option to select, postpone, ignore, or auto-execute 
the suggestions generated by data-driven analysis. The feedback may be relayed via a service orchestrator. 

In the following sections, we focus on two use cases of closed-loop control. The first use case, which 
focuses on inner-loop control, automatically mitigates the congestion risk caused by a user dominating 
the PON bandwidth through dynamic traffic management. The second use case, demonstrating outer-
loop control, automatically pursues service upgrade opportunities for users who experience bandwidth 
constraints due to the speed limit of their subscription. 

Automatically mitigating congestion risks from hogging users
To ensure fair bandwidth sharing between subscribers in the downstream direction, the OLT implements 
weighted fair queuing (WFQ). Upon congestion, the PON’s capacity gets fairly distributed between the 
active subscribers. Because a WFQ scheduler operates over short time periods and is memoryless, it 
does not prevent users from dominating the bandwidth over longer time periods. Therefore, CSPs often 
enforce a fair-use policy using a data volume cap. We propose an alternative method that mitigates 
congestion risks without a noticeable impact for the hogging user. This method is based on dynamic traffic 
management. 

With dynamic traffic management, the sensor (Figure 6) measures periodically (typically every 5 minutes) 
the volume of data downloaded during a predefined time interval. The measured data volume is compared 
with a rule-based data-volume threshold (intent in Figure 6). If a hogging user is detected, then the 
controller determines the reduction of this user’s weighting required to mitigate the congestion risk. The 
actuator applies this weighting reduction in the WFQ scheduler. The effect of such a preventive weighting 
reduction is illustrated in Figure 7. 

Figure 7. Dynamic traffic management ensures speed test success for any user 
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This figure compares static and dynamic traffic management for a PON with normal users (blue), a hogging 
user (orange), and a speed test user (purple). All users have a speed limit of 1 Gb/s. With static traffic 
management, which relies only on the WFQ scheduler, the speed test fails. Dynamic traffic management 
detects the hogging user (1), and therefore preemptively reduces its weighting (2). This weighting 
reduction does not affect the hogging user’s speed except during the short period of the speed test when 
the PON is congested (3). With dynamic traffic management, the speed test is successful while the increase 
in download duration for the hogging user is negligible. 

Automated pursuit of upgrade opportunities for constrained users
Users who experience bandwidth constraints due to the speed limit of their subscription are likely to be 
interested in an upgrade to a higher-speed service. As explained in the section on anomaly detection, a 
bandwidth bottleneck can be detected by analyzing a subscriber’s bandwidth usage over time. 

If the bottleneck is due to the speed limit of the user’s subscription, the controller can determine the 
speed required to mitigate the bandwidth limitation and verify that the required rate increase does not risk 
PON congestion. This verification is done using the digital twin network. 

If the speed increase is feasible, the controller can provide an intent suggestion to the operator (OSS/BSS) 
using the outer control loop shown in Figure 6. The intent suggestion may be used to offer the subscriber 
a free trial of a higher-speed service. If the user accepts the offer, the operator adapts the intent. Or the 
operator may revert the intent if the user decides not to subscribe to the higher-speed service. 

Assistance to humans 
As network automation continues to advance, there remains a crucial role for human involvement in 
specific aspects of operations. Even with automated processes handling routine tasks, humans still need to 
ingest intent and troubleshoot problems that the controller cannot autonomously resolve or diagnose. In 
addition, human technicians are still necessary for conducting manual interventions in the field, particularly 
for installing and maintaining the outside distribution network. AI/ML paves the way to assist with human 
interventions as we explain in the following sections.

Computer vision
Computer vision is a branch of artificial intelligence focused on enabling machines to analyze, process, 
interpret, and understand visual data from images and video. While computer vision began developing in 
the late 1950s, it has significantly advanced since 2012 due to the convergence of three key factors: the 
introduction of deep learning models, the unprecedented availability of labeled images for model training, 
and the dramatic increase in the computational power of GPUs. Today, accuracy of image recognition rivals 
human performance and even surpasses it in specialized applications.

Computer vision can assist field technicians in deploying and maintaining the outside distribution network 
(outer control loop 2 in Figure 1). Each technician is equipped with a smartphone featuring a high-quality 
camera, enabling them to capture images of the network elements before and after manual operations. 
The images are sent for analysis using object detection, image recognition, optical character recognition 
(OCR), barcode recognition, and data matrix code recognition. The goal of this OCR and code recognition is 
to uniquely identify any labeled network element handled by the technician to ensure that the technician 
works on or with the right element and to keep the inventory management system error free. 
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The object detection and image recognition enable instant detection of faults in the physical network 
installation and configuration. Because faults are detected while the technician is on site, we avoid 
unnecessary truck-rolls and network deployment delays. Augmented reality is used to display both the 
identified faults and suggested repair instructions. Technicians can see visual overlays on the image they 
captured that highlight the faults and guide them through the necessary repairs. By automating the quality 
control process, field operations can be monitored and verified in real-time. This helps improve the accuracy 
of the installation from the start, reducing errors and increasing the rate of first-time right operations.

For example, when a technician needs to connect a new subscriber, the controller identifies the 
recommended splitter port and, if possible, one or more alternative splitter ports. This recommendation 
is based on information from the inventory management system and passive topology database. Before 
making the connection, the technician captures a first image to verify the current state of the drop 
splitter installation. The controller analyzes this image and instantly provides feedback to the technician 
using augmented reality. In the example shown in Figure 8, the controller flags that the recommended 
port is already in use and three of the ports lack termination caps. After the installation, a second image 
is captured and sent to the controller for verification. If the installation is faultless, then the inventory 
management system and passive topology database can be updated.

Figure 8. Example of how AI helps a field technician connect a new subscriber to an existing drop splitter. 
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Computer vision supports capacity management of the outside plant (ports in use, ports free in street 
cabinets, distribution points, splitters, etc.), helps identify the optical path of a subscriber (to which port, 
splitter, patch cord the end user is connected), and proactively signals frequently observed installation 
errors (missing screws, dust caps, bent fiber, wrong patch cord, etc.).
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Large-language models
The success of deep learning for computer vision inspired similar breakthroughs in natural language 
processing (NLP), culminating in the development of the transformer architecture. This innovation 
greatly enhanced the accuracy of large language models, making their capabilities comparable to human 
performance in many tasks. As a result, the public release of ChatGPT in 2022 showcased these models’ 
ability to understand and generate human-like text with impressive proficiency.

LLMs can support operators in troubleshooting network problems. While a pre-trained LLM base model 
contains a wealth of information, such a model is not effective for such specialized tasks without additional 
techniques to augment its capabilities. To effectively troubleshoot network problems, the LLM needs to 
be fed with information from sources such as equipment documentation, log files, alarm notifications, 
and telemetry data. To provide the LLM with data relevant to the user query, the LLM is combined with 
an information retrieval system. This combination enables retrieval-augmented generation (RAG). The 
information retrieval system may use an LLM as well.

We are conducting research on such RAG systems. We have developed an experimental RAG system 
to allow operators to ask any question about the ONTs connected to their network. In a first step, the 
information retrieval system translates the operator’s question, expressed in natural language, into a 
database query and then searches the ONT database to retrieve the relevant data. In the next step, we 
instruct the LLM to answer the question using the retrieved data. Figure 9 shows a screenshot of the 
user interface of this RAG-based chatbot. In addition to providing the answer, this chatbot also displays 
the database query used to obtain the relevant information. This feature enables the user to verify the 
accuracy of the query. The benefit of this chatbot is that users can ask questions without having to know 
database query languages or the database schema. Another advantage is that the system can handle a 
wide variety of questions without requiring predefined queries for each type of question.

Figure 9. Screenshot of an experimental LLM-based chatbot. 
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Another forward-looking application of LLMs is intent ingestion (outer control loop 2 in Figure 1). Intent 
ingestion is the process of obtaining intent statements through interactions with users. By using an 
LLM-powered chatbot for the intent ingestion, network operators can specify their intent using natural 
language. A human-machine dialog is used for intent clarification and refinement. The LLM allows 
operators to express intent without having to learn the specific language of the intent-based system, 
thereby avoiding a steep learning curve and reducing the required skill level. As part of this process, the 
LLM can use the digital twin network to either validate any intent expressed by the operator or make 
alternative intent suggestions.

Conclusion
Modern network domain controllers facilitate AI/ML-based decision-making, paving the way for 
autonomous broadband networks that can sense, think, and act. In this paper, we’ve presented numerous 
beneficial applications of AI/ML in fixed access networks. Most of these applications are already available 
for deployment today (see Appendix). Moreover, AI/ML is advancing more quickly than most other recent 
technologies. Broadband operators are well-positioned to take full advantage of these developments.

Appendix: mapping applications of AI/ML in fixed 
networks to Nokia solutions
Nokia’s solution for the fixed-network domain controller is the Altiplano access controller. This controller is 
an open and programmable platform that enables data analytics and AI/ML diagnostics. It can be flexibly 
extended with applications that help to better optimize, troubleshoot, and analyze the fixed network.

Table 2. Mapping AI/ML applications and use cases to Nokia solutions.

Use case or AI/ML application Technology Nokia solution

Manually configured TCA Anomaly detection Altiplano feature

Fingerprinting-based TCA Anomaly detection Altiplano feature

Moving-average-based TCA Anomaly detection Altiplano feature

Real-time anomaly detection with time-series 
forecasting

Anomaly detection Network Trend Analyzer (NTA) 

Trend-based anomaly detection with time-series 
forecasting

Anomaly detection Network Trend Analyzer (NTA) 

Detection of degraded SFP Anomaly detection SFP Health Monitor (SHM) and ONT Health Monitor (OHM) 

Trend-based congestion risk detection Anomaly detection PON Capacity Planner (PCP) 

Detection of a hogging user Anomaly detection Bandwidth Sharing Optimizer (BSO) 

Detection of bandwidth bottleneck Anomaly detection Service Campaign Manager (SCM) 

Detection of rogue ONT Alarm correlation Automated Troubleshooting Assistant (ATA) 

Localization of disconnected or cut fiber Alarm correlation Automated Troubleshooting Assistant (ATA) 

Strategic capacity planning
•	 What-if analysis
•	 Split ratio optimization
•	 Service tier definition

Digital twin PON Capacity Planner (PCP) 
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Automatically mitigating congestion risk from 
dominant users

Closed-loop 
automation

Bandwidth Sharing Optimizer (BSO) 

Automated pursuit of upgrade opportunities for 
constrained users

Closed-loop 
automation

Service Campaign Manager (SCM) 

ODN installation assistance
•	 Installing a new splitter
•	 Connecting a home to an existing splitter
•	 Map splitter ports to subscribers to refine passive 

topology

Computer vision Broadband Easy Connect
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