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Abstract
Artificial intelligence (AI) technologies are changing the way the world works. Businesses in every  
sector want to use AI to boost operational efficiency, generate more revenue and revolutionize  
the user experience. Many have already taken the leap and are exploring AI applications such  
as natural language processing (NLP), outcome prediction, visual analysis and personalization.

To get the most from these applications, businesses need networks that can efficiently handle  
the compute- and data-intensive nature of AI workloads and complete jobs in the shortest amount  
of time. This white paper explores the unique characteristics of AI workloads, the key components  
of AI infrastructure and the factors that organizations need to consider as they evolve their data  
center networking for AI workloads. It describes how the comprehensive Nokia Data Center Fabric  
solution can help them implement high-capacity, lossless infrastructures that are ready to meet  
the demands of any current or future AI applications and use cases.
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Introduction
Artificial intelligence (AI) has become a mainstream topic in the technology landscape and will continue 
to play a dominant role in our daily lives going forward. AI and machine learning (ML) workloads harness 
the power of modern accelerated computing, storage and networking to learn and interpret data, make 
decisions and enhance problem solving. 

While these technologies are still in their early days, AI and ML will continue to transform the way industries 
and businesses work. They promise to help improve operational efficiency and foster innovation while 
providing new business opportunities, generating new revenue streams and revolutionizing the user 
experience across a range of sectors.

The applications and use cases for AI continue to increase at a rapid pace. The following list, while not 
comprehensive, helps provide a view of the possibilities that may be explored with AI/ML technologies.

•	 Natural language processing (NLP): The arrival of ChatGPT was a turning point for the AI/ML space 
and a key validation of the NLP use case. NLP improves the end user experience and helps enhance 
communication for applications such as chatbots or voice-enhanced applications. 

•	 Outcome prediction: The ability to enhance the prediction of outcomes based on analysis of historical 
data can be beneficial to enterprises across all segments.

•	 Personalization: The ability to provide customized recommendations based on analysis of user behaviors 
and preferences can be beneficial to e-commerce based companies as well as social media platforms

•	 Visual analysis: The ability to analyze and interpret human, machine or process that is visual in nature 
can enhance applications such as facial recognition, medical imaging and manufacturing quality control.

•	 High-performance computing (HPC): HPC can provide the scalability and computational power that 
organizations need to leverage and adopt AI technologies for scientific research, intelligent simulation 
and modeling applications.

AI workloads differ from traditional workloads because they are more computationally intensive and 
typically require the exchange of large blocks of data between iterations. AI workloads require HPC and 
often need specialized computing and processing hardware as well as large-scale storage to manage the 
stringent needs of workload processing. The networking infrastructure that supports AI workloads plays 
a critical role in maximizing the utilization of compute resources to achieve the shortest possible job 
completion times (JCTs) for AI workloads. This paper focuses primarily on networking aspects related  
to supporting AI workloads.
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Characteristics of AI workloads
In the AI world, everything revolves around the concept of a model. Today’s well-known models include 
Open AI’s Generative Pre-trained Transformer (GPT), Meta’s Llama, Mistral’s Mixtral, Anthropic’s Claude  
and Google AI’s Gemini. Models can be trained to do any number of things. For example, a large language 
model (LLM) is designed to process natural language requests from users and provide humanlike 
responses to text queries. 

A model can be a general-purpose model or be highly trained for a business outcome. For example, the 
finance and healthcare segments could have their own training models built around sets of data relating  
to their particular business cases.

AI workloads are classified into two broad categories based on the tasks they perform: AI training and  
AI inference.

AI training 
Figure 1 depicts the key stages of AI training and AI inference. The key stages of AI training include data 
collection, model selection, model training and model deployment. 

Figure 1: Stages of AI training and AI inference
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A training set is all the data that goes into a model. For the biggest models, such as GPT, the training 
set involves a tremendous amount of data scraped from sources such as the World Wide Web, Wikipedia 
articles, novels and news sites. This data is used to teach the model how to perform the expected tasks.
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LLMs represent a subset of generative AI, with a focus on text generation. Generative AI is not limited  
to text, and can include outputs such as images, audio, video and code. Additional use cases may dictate  
the use of specific data. For example, the training set may include historical log files for various Internet of 
Things (IoT), operational technology (OT) or information technology (IT) devices, application data captured 
by operations and business support system (OSS/BSS) tools, traffic patterns, security threats, application 
usage patterns and more.

Model selection involves selecting the type of optimizing algorithms or architecture for the model. During 
model training, the model learns patterns and the relations between data sets. The training process can 
take a period of hours to weeks with smaller models and data sets. It can take months or up to a year  
to train models that are larger or that use data sets that may require greater precision. 

The trained model needs to be evaluated and fine-tuned to deliver the required performance and 
precision. For example, it took 30.84 million GPU hours to train the Meta Llama 3.1 405B model. 
(Source: https://huggingface.co/meta-llama/Meta-Llama-3.1-405B).

AI inference 
After a model is developed, it can be deployed to serve end users at scale, in a process called inference. 
This process applies the trained model to respond to input data and provide outputs based on the 
requested queries.

The first step is to deploy the trained model for inference tasks. This involves packaging the model as  
part of an app or web page or within a software library or as an executable file. Once the trained model  
is deployed, inference parses the input, adds some preprocessing and feeds the data into the model  
to produce the desired output.

Based on the application and desired outcomes, the output may need to be generated in real time  
(e.g., for voice assistants or autonomous vehicle responses). This imposes a requirement for quick 
response times.

Key components of AI infrastructure
AI infrastructure includes the necessary resources to support AI workloads. AI training workloads are data 
and compute intensive. They involve the processing of exceptionally large data volumes that may include 
text, audio, databases ,tables and other types of data. These data sources provide the basis for processing 
and interpreting the data. AI workloads involve complex mathematical models and operations that require 
extensive computational power. 

AI applications often require parallel processing that spans multiple compute nodes or processing units. 
This provides better scale and faster processing. The processing of AI workloads is not a one-and-done 
event. The processed data may need to be modified or improved, and the entire process of learning  
and performance evaluation is repetitive and iterative.

Table 1 describes the key components of an AI infrastructure.
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Table 1: Key AI infrastructure components

Compute nodes •	 These are individual servers or nodes that include the compute and memory resources required to support  
the necessary computational processing tasks and frequently accessed storage. They include central processing 
units (CPUs), auxiliary processing units (XPUs) such as graphics processing units (GPUs), tensor processing units 
(TPUs), accelerated processing units (APUs) and language processing units (LPUs), and network interface cards 
(NICs). The servers also support the large amounts of high-speed memory that AI workloads need to rapidly 
access and process data.

•	 GPUs are currently the market’s most commonly deployed XPUs. Unlike CPUs, which support general-purpose 
computing and control operations, GPUs are specialized hardware processing units that carry thousands  
of cores and are better suited for the advanced requirements of AI training and inference workloads.  
They are deployed for their ability to perform complex mathematical computations at scale and speed.

•	 The number of GPUs in GPU clusters can range from hundreds of GPUs on the low end to tens of thousands  
of GPUs on the high end. 

“xAI’s Memphis Supercluster, which recently went live in Tennessee, is equipped with 100,000 GPUs, making it  
the most powerful AI training cluster in the world.” (Source: Data Center Dynamics) 

Storage systems •	 Storage systems store data within the AI infrastructure. They are used to store the datasets, parameters and 
intermediate results related to the model being trained. 

•	 Storage technologies may include network-attached storage (NAS), storage area networks (SANs), NVM Express 
(NVM-e) or distributed file systems such as Hadoop or Google File System. 

Networking •	 To meet existing and evolving AI needs, compute nodes must be interconnected by high-speed, lossless and 
low-latency networking. This is essential to reduce JCT, a metric used to measure the time it takes to complete 
a task, such as training a model or performing an inference operation.

•	 Networking technologies may include InfiniBand and Ethernet for providing reliable, high-capacity interconnects 
within the AI infrastructure.

•	 Networking provides the access to servers hosting the GPUs to orchestrate learning and inference jobs.

Software •	 Software plays a critical role within the AI infrastructure. It typically includes software tools for deploying and 
managing the compute, storage and networking resources within the infrastructure. Containerized AI workloads 
may use platforms such as Kubernetes and Docker to manage and orchestrate workloads.

•	 In addition to management and orchestration software, AI workloads require software to support model 
development as well as distinct phases related to AI training and AI inference tasks.

Power and cooling •	 GPUs consume a lot of power and drive the need for a much greater level of cooling for required non-AI 
workloads. Power consumption and cooling are important deciding factors in the AI cluster design. 

•	 The average power consumption of a GPU is five times that of a CPU. GPUs consumed up to 700 W of power at 
the end of 2023, and that number is inching up even higher in 2024.

•	 French firm Schneider Electric estimates that power consumption of AI workloads totals around 4.3 GW in 2023, 
which is slightly lower power consumed by the nation of Cypress in 2021 (4.7 GW). 

“Power consumption of AI workloads will grow at a CAGR of 26 to 36 percent. By 2028, AI workloads will consume 
from 13.5 GW to 20 GW, which is more than what Iceland consumed in 2021.” (Source: tomsHardware) 

Price •	 In current market conditions, specialized servers with GPUs, accelerated storage and high-speed interconnects 
pose a big challenge to optimizing the budgets, especially for small and medium enterprises (SMEs) and publicly 
funded universities.

•	 A carefully designed data center infrastructure goes a long way in reducing CAPEX and OPEX and driving down 
the overall total cost of ownership (TCO) without compromising on the performance required for the workloads. 

https://www.datacenterdynamics.com/en/news/xais-memphis-supercluster-has-gone-live-with-up-to-100000-nvidia-h100-gpus/
https://www.tomshardware.com/tech-industry/nvidias-h100-gpus-will-consume-more-power-than-some-countries-each-gpu-consumes-700w-of-power-35-million-are-expected-to-be-sold-in-the-coming-year
https://www.tomshardware.com/news/power-consumption-of-ai-workloads-approaches-that-of-small-country-report
https://www.tomshardware.com/news/power-consumption-of-ai-workloads-approaches-that-of-small-country-report
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Networking considerations for AI workloads
Networking plays a critical role in supporting AI workloads. For example, the data center network fabric 
needs to deliver reliable and seamless connectivity within the AI infrastructure. The network must also 
consistently deliver the best possible performance for training and inference tasks and operations. 

AI training workloads require lossless networks that can provide high capacity, high speed and very  
low latency. InfiniBand is widely used today, but Ethernet is beginning to gain strong traction because  
it provides several advantages when it comes to AI workloads.

The networking capacity, speed and latency requirements are less stringent for AI inference than for  
AI training. Since inference is about serving the AI model to the end users, response times and proximity  
to the end user become key considerations for network design. “Ethernet is well suited to meeting these 
requirements, as illustrated by Meta’s use of Ethernet to train Llama 3-450B, which delivered equivalent 
performance to InfiniBand.” (Source: https://arxiv.org/abs/2407.21783)

It is essential for organizations to implement well-designed network architectures that can meet the 
challenging reliability, speed, capacity and latency requirements of AI workloads within their price and 
power budget constraints. This paper will first explore some key technologies and the roles they play in 
supporting networking for high-performance AI workloads, and then examine some of the architectural 
models required to achieve the right performance for high-performance workloads and applications.

InfiniBand and RDMA 
The InfiniBand architecture1 emerged in 1999 as an interconnect technology designed for HPC and  
data-intensive applications. InfiniBand is an industry-standard specification that defines an input/ 
output architecture used to interconnect servers, communications infrastructure equipment, storage  
and embedded systems.

InfiniBand supports Remote Direct Memory Access (RDMA).2 RDMA technology enables direct memory 
access from the memory of one server to another without involving either server’s operating system 
or processor. Instead of using valuable CPU processing time to manage communications between the 
application and the network, RDMA directly passes data (files, messages, blocks, etc.) between different 
application memory spaces, eliminating CPU involvement. The InfiniBand Architecture (control stack)  
is made up of the following parts, as illustrated in Figure 2 below:

•	 An application programming interface (API) that enables applications to take advantage of RDMA  
through the RDMA message service

•	 The RDMA message service, which is enveloped in the RDMA software and provides access to  
the RDMA hardware

•	 A Host Channel Adapter (HCA) that provides InfiniBand network connectivity

•	 Interconnect, which is a network of cabling, switches and routers (InfiniBand).

1	 The InfiniBand® Trade Association.
2	 “Enabling the Modern Data Center – RDMA for the Enterprise”. InfiniBand Trade Association white paper. 20 May 2019.  Retrieved 9 August 2024.

https://arxiv.org/abs/2407.21783
https://www.infinibandta.org/
https://www.infinibandta.org/wp-content/uploads/2019/05/IBTA_WhitePaper_May-20-2019.pdf
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Figure 2: The ‘parts’ of RDMA (control stack)
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Source: IBTA white paper, 20 May 2019

RDMA over Converged Ethernet
The InfiniBand specification describes two network stack implementations for RDMA technology:  
RDMA over InfiniBand (or simply InfiniBand) and RDMA over Converged Ethernet (RoCE).

RoCE benefits from the ubiquity of, and advancements made in, IP/Ethernet over the past decades.  
It places the InfiniBand transport layer inside IP/Ethernet frames, providing the RDMA capability, kernel 
bypass and other benefits that are not part of traditional TCP/IP. As shown in Figure 3, RoCE offers the 
ability to directly “read from” or “write to” an application’s memory, in contrast to traditional client- 
server interactions that use TCP/IP and involve many copies and significant CPU overheads.

Figure 3: Traditional and RoCE data movement

 
Source: RoCE Introduction

The RoCE specifications have two variants: RoCEv1 and RoCEv2. RoCEv1 was introduced in 2010. As shown 
in Figure 4, it uses regular Ethernet frames with an Ethertype value that indicates these are RoCE-related 
headers (global routing and base transport headers). The RoCE frame does not include an IP header,  
so it can only provide connectivity within a layer 2 Ethernet domain.

https://www.infinibandta.org/wp-content/uploads/2019/05/IBTA_WhitePaper_May-20-2019.pdf
https://www.roceinitiative.org/roce-introduction/
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RoCEv2 was introduced in 2016 and is an extension to the RoCE specification. It replaces the InfiniBand 
global routing header (GRH) with IP and User Datagram Protocol (UDP) headers. This allows communication 
across IP subnets.

Figure 4: RoCE and RoCEv2 frame formats
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RoCE and lossless networks
InfiniBand supports link layer flow control, and the hardware dynamically tracks buffer usage.3 This allows 
InfiniBand to be lossless because flow control can pause data transmission to preempt buffer overflows. 

RoCE has a few limitations compared to pure InfiniBand and needs to address congestion and flow control. 
Data Center Quantized Congestion Notification (DCQCN) is an end-to-end congestion control scheme 
for RoCEv2.4 It is implemented on the server NICs (endpoints) and works in conjunction with Explicit 
Congestion Notification (ECN) and Priority Flow Control (PFC) features implemented in the data center 
switches.  

•	 The ECN mechanism monitors buffer usage on the network elements and allows endpoints to  
be notified of imminent congestion without dropping packets when the buffer usage exceeds a 
configured threshold. This is achieved with RoCE Congestion Notification Packets (CNPs) sent to  
the sender endpoint. 

•	 PFC enables drop-free Ethernet fabrics by sending per-priority PAUSE frames to upstream devices.  
This priority-specific back-pressure mechanism ensures that the network provides lossless transmission.

The correct operation of DCQCN requires balancing PFC and ECN requirements to ensure that PFC is not 
triggered too early, before ECN can send congestion feedback. While PFC delivers a lossless network, ECN 
helps achieve maximal network resource utilization. For RoCE-based deployments, it is essential to support 
the congestion and flow control feature enhancements discussed above. This will help data center teams 
deliver lossless networks when they use Ethernet instead of InfiniBand for supporting AI workloads.  

Architecture considerations for deploying AI infrastructures 
Hyperscalers are leading the charge in AI workload deployments. Their main drivers are to gain a 
competitive advantage and meet demands for AI services and tools that will enable their customers  
to deploy AI-based models and use cases. Their incumbent roles and ability to deliver cloud-like scale  
and service options (e.g., pay as you grow and need) will progress naturally as they evolve their AI offers. 

Enterprises, communications service providers (CSPs) and cloud providers of all types understand  
the importance of AI and are looking for ways to apply it to their business transformation initiatives. 

3	 Grun, P. “Introduction to InfiniBand for End Users”. InfiniBand Trade Association white paper. Retrieved 9 August 2024.
4	 Zhu, Y et al. “Congestion control for large-scale RDMA networks”. SIGCOMM15 paper. Retrieved 9 August 2024.

https://network.nvidia.com/pdf/whitepapers/Intro_to_IB_for_End_Users.pdf
https://conferences.sigcomm.org/sigcomm/2015/pdf/papers/p523.pdf
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Implementing AI infrastructures for training is a highly challenging process because it requires special 
technical expertise and can be cost prohibitive. Some companies may implement their own training 
infrastructures, while others may prefer to use AI platforms and associated services from large cloud 
providers. IDC refers to this model as “public AI.”5

AI inferencing requirements are typically less stringent than AI training requirements. It is likely that more 
companies will look at a do-it-yourself (DIY) approach to implementing AI inference infrastructures that 
support their specific business needs. IDC refers to this model as “private AI,” which is the use  
of enterprise data center and AI platforms for actioning enterprise-specific generative AI workflows.

According to IDC, large enterprise IT departments prefer utilizing public AI frameworks for AI use cases 
that are cost, time, scale and performance efficient to implement on cloud foundation models. IDC also 
says that inferencing models that need low-latency end-user access are typically run in enterprise edge 
locations in private AI infrastructures, while batch-mode inferencing and global-scale inferencing models 
are better suited for implementation in public AI frameworks.

Power consumption is another key consideration for organizations deploying AI workloads. Some massive 
AI infrastructures may be too large to meet power requirements or legislative constraints within the 
planned area of deployment. For such scenarios, a model where AI workloads are distributed across 
multiple locations can help ensure compliance with the required power budgets and constraints.

Back-end and front-end networks
As shown in Figure 5, the back-end network is used for interconnecting high-value GPU resources required 
for high-computation tasks such as AI training, AI inference or other HPC workloads. The back-end network 
delivers lossless, low-latency and high-performance connectivity for the AI training compute and dedicated 
storage resources. 

Figure 5: Back-end network	 Figure 6: Front-end network
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The front-end network (Figure 6) supports connectivity for AI workloads, general-purpose workloads 
(non-AI compute) and management of AI workloads. In the context of AI inference, the front-end network 
supports connectivity for compute and shared storage resources to enable communication with end  
users and devices.

5	 Bhagavath, V and Mehra, R. “Multicloud networking will inflect in 2024”. IDC Market Perspective.  Retrieved 9 August 2024.

https://www.idc.com/getdoc.jsp?containerId=US51950424
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Separate vs. converged back-end and front-end networks
Based on its cost and power budgets, an organization can choose to deploy separate front-end and  
back-end networks as shown in Figure 7, or have a converged design, as shown in Figure 8. In both 
scenarios, the front-end and back-end networks are co-located within the same data center location.

Figure 7: Separate back-end and front-end networks
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In Figure 7, the back-end and front-end networks implement dedicated and separate leaf–spine 
architectures. The GPU cluster and dedicated storage are interconnected by a high-speed, non-blocking, 
lossless, low-latency back-end network. This network enables GPUs to interconnect with each other  
and read disks with high performance.

The CPU cluster, shared storage and GPU cluster—some AI inference use cases may dictate the need 
for GPUs, albeit with lower performance criteria—are interconnected through a lower-speed, front-end 
network that serves that serves AI inference, general-purpose data center, and AI training and inference 
management workloads. To enable connectivity for AI training and inference management, the GPU cluster 
(in the left-side AI training/inference infrastructure block) connects to the back-end and front-end networks. 

Figure 8: Converged back-end and front-end networks
Co-located back-end and front-end networks
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In the converged design (Figure 8), the back-end network connects to the front-end network. The back-
end leaf nodes and front-end leaf nodes are interconnected through spine nodes. This lowers CAPEX by 
reducing the number of NICs required on GPU nodes and reducing the number of leaf and spine nodes  
and interconnections required.
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In the back-end, GPU interconnect is supported by high-speed, typically non-blocking, lossless and low-
latency networking. But there can be oversubscription in the front-end network on the links connecting 
leaf nodes to the rest of the front-end data center network.

These design choices are based on customer workload requirements, and their cost and power budgets.

Distributed AI infrastructures 
AI infrastructures may be co-located, as shown in Figure 7 and Figure 8, or distributed across different 
locations, as shown in Figure 9.

Figure 9: Distributed AI infrastructures
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The distributed deployment model may unlock some potentially interesting use cases. For example, several 
large cloud providers are beginning to offer GPU as a service (GPUaaS). GPUaaS offerings deliver scalable, 
on-demand access to GPUs to support AI training and inference. Training infrastructure imposes large 
and highly stringent power consumption requirements. To meet these requirements, organizations must 
carefully consider the AI infrastructure designs and the possible need to implement training infrastructure 
at multiple locations to comply with power consumption limits and constraints. 

Distributed inference locations can enable cloud providers to extend their service footprints to meet the 
needs of AI inference use cases that are deployed at the network edge, closer to the end user, to meet 
real-time response requirements.
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Another example involves an enterprise utilizing public AI solutions such as GPUaaS for AI training use cases. 
In this case, inferencing models run in enterprise edge locations in private AI infrastructures (physically at 
the enterprise’s premises or deployed in a colocation provider’s facility) to meet the real-time response 
and low-latency requirements for AI inference.

The distributed deployment model requires exceptionally reliable and high-performance AI data center 
interconnect solutions.

Ultra Ethernet Consortium: Ethernet for AI and HPC workloads
More and more organizations are considering Ethernet as an alternative to InfiniBand for the networking 
portion of AI infrastructures. While Ethernet offers several advantages, there are areas that will need 
improvements to minimize “tail latency” within AI infrastructures. 

The Ultra Ethernet Consortium (UEC) is working to deliver an open, interoperable, high-performance, full-
communications-stack architecture based on Ethernet to meet the growing network demands of AI and 
HPC at scale. 

The UEC aims to define a modern transport protocol for AI and HPC applications. While InfiniBand and RoCE 
are deployed today, they require careful tuning, operation and monitoring. For example, RoCE relies on 
DCQCN for end-to-end congestion control. DCQCN is sensitive to latency, buffering capabilities and types 
of workloads and often needs manual tuning so that it can meet performance expectations. This requires  
a level of expertise and investment, which leads to a high TCO. 

UEC members aim to leverage the ubiquity, performance curve and cost benefits of Ethernet to evolve the 
legacy RoCE protocol with Ultra Ethernet Transport (UET). This modern transport protocol is designed to 
enhance network performance to meet the requirements of AI and HPC applications while preserving the 
advantages of the Ethernet/IP ecosystem. 

Nokia is a member of the UEC and will continue to actively participate in the following areas of work 
identified by current UEC specifications and their future evolutions:

•	 Multi-pathing and packet spraying 

•	 Flexible delivery order 

•	 Modern congestion control mechanisms 

•	 End-to-end telemetry 

•	 Increased scale, stability and reliability.

Nokia data center fabrics for AI workloads
The Nokia Data Center Fabric solution is designed to deliver the reliability and simplicity required to 
implement high-performance, lossless AI infrastructures, while providing the flexibility to allow the  
network designs to adapt to evolving business needs.

A complete portfolio of data center hardware platforms
Nokia is the leading builder of cutting-edge IP networking platforms. More than 1.8 million Nokia IP 
routers have been deployed in mission- and business-critical network environments worldwide, and Nokia 
brings this expertise to the design of platforms for data center switching. The field-hardened protocol 
applications that support the world’s largest and most demanding IP networks also run on Nokia data 
center switches.

https://ultraethernet.org/
https://ultraethernet.org/wp-content/uploads/sites/20/2023/10/23.07.12-UEC-1.0-Overview-FINAL-WITH-LOGO.pdf
https://www.nokia.com/networks/data-center-networks/data-center-fabric
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Nokia offers a comprehensive portfolio (Figure 10) of data center hardware platforms for implementing 
high-performance leaf–spine designs for back-end and front-end networks. 

This portfolio is designed and optimized to support high-capacity, low-latency and lossless back-end 
networks for the most stringent AI training requirements. It offers an extensive choice of hardware 
platforms in varying form factors to support front-end network designs that interconnect AI inference 
compute, non-AI compute and shared storage resources based on an organization’s deployment needs.

Figure 10: Nokia hardware portfolio for data center switching
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Leading-edge modular platform design
Nokia 7250 IXR-6e/IXR-10e/IXR-18e Interconnect Routers are differentiated, modular platforms designed 
for data center spine, super-spine, aggregation and wide area network (WAN) deployments. These 
platforms are based on the latest versions of Broadcom Jericho merchant silicon and deliver massive 
scalability, flexibility and operational simplicity. This makes them an optimal choice for designing very-high-
capacity networks for AI training and inference and HPC workloads.

The 7250 IXR-6e/10e/18e platforms provide native hardware support for 800GE, 400GE, 100GE, 50GE, 
40GE, 25GE and 10GE interfaces, including breakout support for intra-fabric, WAN and server connectivity. 
The four-slot 7250 IXR-6e platform supports a system capacity up to 115.2 Tb/s full duplex (FD). The 
eight-slot 7250 IXR-10e platform supports a system capacity up to 230.4 Tb/s FD. The 16-slot 7250  
IXR-18e platform supports a system capacity up to 460.8 Tb/s FD.



16 Application note
Networking for AI workloads

In addition to supporting high-availability control, fabric, fan and power configurations, these platforms 
support industry-leading and unique hardware design innovations and capabilities, including: 

•	 High-quality, midplane-less, orthogonal direct cross-connect—a critical design element for successfully 
moving to future faster Serializer/Deserializer (SerDes) speeds and beyond 

•	 An architecture without retimers across multiple generations of ASICs, driving low power and ultra- 
high reliability with a component-minimizing design

•	 A power- and cooling-optimized design 

•	 Support for 800GE and 400GE coherent optics with support for 400GE ZR+ optics in all pluggable optics 
positions 

•	 High-capacity 800GE density and efficiency in a 16-slot configuration 

•	 A generational chassis design that can start with Broadcom J2C+ Integrated Media Modules (IMMs)  
and upgrade to Broadcom J3 while preserving Control Processor Modules (CPMs), power supply units 
(PSUs) and fans with full backward compatibility for J2C+ IMMs. 

These leading hardware design attributes, combined with a full suite of Nokia SR Linux network operating 
system (NOS) features and the Nokia Event-Driven Automation (EDA) platform, help data center and cloud 
teams achieve their high-availability design and operations efficiency goals.

A comprehensive portfolio of fixed configuration platforms
As part of the Nokia Data Center Fabric solution, the Nokia 7250 IXR-X1b/X3b, 7220 IXR H series and  
7220 IXR D series platforms provide multiple fixed configuration chassis variants with support for 800GE,6 
400GE, 100GE, 50GE, 40GE, 25GE, 10GE or 1GE port speeds.

The Nokia 7250 IXR-X1b and IXR-X3b are based on Broadcom merchant silicon and provide high speed  
and density in a 1RU form factor. These platforms support low-latency applications while providing a large 
buffer memory for delay-tolerant applications.

Nokia 7220 IXR-H series routers are based on Broadcom merchant silicon and designed for the leaf and 
spine layers of data center fabrics. They deliver very-high-scale interconnectivity for enterprise, service 
provider and webscale data center and cloud environments. The 7220 IXR-H series consists of the  
7220 IXR-H2, 7220 IXR-H3 and 7220 IXR-H4.

Nokia 7220 IXR-D series platforms are based on Broadcom merchant silicon and designed for the leaf and 
spine layers of data center fabrics. They deliver high-scale interconnectivity for enterprise, service provider 
and webscale data center and cloud environments. The 7220 IXR-D series consists of the 7220 IXR-D1, 
7220 IXR-D2L, 7220 IXR-D3L, 7220 IXR-D4 and the 7220 IXR-D5 platforms.

The 7250 IXR-X1b/X3b, 7220 IXR-H and IXR-D series platforms support redundant DC or AC power 
options and support either front-to-back or back-to-front airflow configuration options with redundant 
hot-swappable fans.

The Nokia 7215 IXS-A1 Interconnect System is designed for leaf and spine data center fabric management 
connectivity in enterprise, service provider and webscale data center and cloud environments.

6	 800GE support will be offered in an upcoming release.
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SR Linux: The industry’s most advanced NOS
Unlike closed operating systems, which are monolithic by design and lack modularity and flexibility, an 
open NOS is consciously designed to implement an architecture that is modular, extensible, extremely 
customizable and ready for network automation. The Nokia SR Linux NOS delivers an open, extensible 
framework that enables automation with advanced software features that provide proven quality and 
resiliency.

SR Linux opens the NOS infrastructure with a unique architecture built from the ground up around  
model-driven management and modern interfaces. With SR Linux, organizations benefit from:

•	 A cloud-native design approach that offers superior programmability, unrivaled flexibility and  
resilient IP routing

•	 A Linux-based NOS and kernel that enable network teams to build applications that are modular  
and isolated into their own failure domains

•	 A fully modular design where each network application (e.g., BGP, EVPN, LLDP) has its own YANG data 
structure, which ensures complete openness and consistent operation across all system applications

•	 A microservices-based, state-efficient design that makes it easy to enable hitless per-application 
upgrades and resilient networking

•	 An open, scalable telemetry framework that uses gRPC, gNMI and protobufs and does not require  
any translation layers

•	 A NetOps Development Kit (NDK) that allows third-party network applications to be fully integrated  
into the system with their own YANG models (similar to Nokia network applications).

Lossless Ethernet networks powered by SR Linux features
Ethernet is gaining momentum as a suitable choice for interconnecting high-performance AI workloads. 
Several factors make Ethernet appealing when it comes to AI. For example, Ethernet is ubiquitous and 
widely implemented, and has a vast ecosystem of vendors and proven interoperability. It is also cost-
effective compared to alternative technology choices.

RoCE enables RDMA technology (which originally was introduced for InfiniBand-based networks) to run 
over existing Ethernet infrastructures. AI training infrastructure requires lossless network connectivity, and 
Ethernet networks must support features that help ensure bandwidth is prioritized for AI workload traffic. 
As part of its comprehensive QoS feature set, SR Linux provides ECN and PFC capabilities for delivering 
lossless Ethernet networks in RoCE-based deployment models. 

ECN is a congestion management mechanism. It reduces packet loss during network congestion scenarios 
by marking packets to flag congestion within the network. This, is turn, helps notify the endpoints and 
trigger subsequent rate adjustment actions as required. It ensures lossless behavior and helps maintain 
throughput. 

PFC helps enable lossless Ethernet networks by ensuring that AI networking traffic is given the highest 
priority based on queue markings. PFC provides flow control on a per-priority basis by allowing pause 
frames (between endpoints) to be prioritized only on queues experiencing congestion. There is no impact 
on other priority traffic. It can work with ECN to provide comprehensive congestion control for lossless AI 
fabrics and support end-to-end congestion control mechanisms such as DCQCN. Most DCQCN capability  
is implemented in the endpoints (NICs) but needs to work in conjunction with ECN and PFC. 

https://www.nokia.com/networks/ip-networks/service-router-linux-NOS/
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In addition to congestion management features, SR Linux offers superior telemetry, manageability, ease  
of automation and resiliency features that are relevant and necessary for supporting high-performance  
AI infrastructures. 

The UEC is working on several initiatives to enhance lossless Ethernet technologies for AI and HPC 
workloads. One of its key initiatives is to define a new transport layer, called Ultra Ethernet Transport 
(UET). Nokia is an active member and participant of the UEC and will continue to enhance and introduce 
features within SR Linux to align with the UEC initiatives and market directions related to lossless Ethernet 
connectivity for AI workloads.

Fabric management and automation platform 
Managing data center fabrics that interconnect AI infrastructure is no different from managing data  
center fabrics that interconnect non-AI or general-purpose workloads. While the hardware platform and 
software feature requirements may be more stringent to meet the needs of lossless fabric design, the 
fabric for AI workloads needs to be designed, deployed and operated. The key is to make operations 
reliable and simple.

SR Linux is designed to enable scalable, easy integration and efficient automation for data center networks. 
The EDA fabric management and automation platform complements SR Linux. It delivers a modern, 
innovative solution that increases network agility by using declarative, intent-based approaches  
to automate all phases of data center fabric operations—from Day 0 design through Day 1 deployment  
and Day 2+ operations. 

EDA builds on the proven Kubernetes platform and leverages a vast open-source ecosystem. This reduces 
risks and lowers barriers to entry for adopting automation . 

EDA includes a cloud-native Digital Sandbox (an integrated network digital twin) that provides a true 
emulation of the production network. It creates container instances of a subset of the actual live network 
elements, maintaining both configuration and state.

The Digital Sandbox allows data center teams to represent the design and configuration of the data center 
fabric in an intent-based, declarative way. Design, fabric and workload intent can be validated on the Digital 
Sandbox, enabling operations teams to quickly and confidently manage the risk associated with a change. 
The Digital Sandbox allows teams to try out the changes, perform detailed validations and then apply the 
changes to the production network.

An abstract, intent-based approach simplifies Day 0 design. The data center operator can focus on high-
level aspects of the design, identifying the basic information needed to build a data center fabric. For 
example, the operator can build the fabric simply by specifying a few parameters, such as the number of 
racks and the number of servers per rack.

Day 1 deployment uses workload intents and abstracts the complexity of the EVPN configuration by 
enabling the data center operator to focus on specifying high-level parameters. This can be as simple as 
identifying the set of downlinks an application workload uses to connect to the fabric. Complexities such 
as switch-to-switch EVPN and allocation of VXLAN network identifiers, route distinguishers, route targets, 
Ethernet segment IDs and Ethernet virtual interfaces are all abstracted. Workload intent can be validated 
using the Digital Sandbox before being deployed into the production network.

The Nokia automation platform adopts DevOps approaches to deliver enhanced NetOps. It uses multi-
dimensional telemetry to monitor and gain deep insights into all network traffic. It also supports easy 
integration with third-party systems and multiple cloud environments with flexible next-generation 
interfaces such as REST APIs and the Nokia Connect microservice.

https://www.nokia.com/networks/data-center-networks/data-center-fabric/event-driven-automation


19 Application note
Networking for AI workloads

AI data center interconnect solution 
Nokia offers a complete and comprehensive solution for interconnecting AI infrastructures between  
data centers and across the WAN. The cloud era demands a new network architecture that interconnects 
edge, regional and core cloud data centers. Data center interconnect ecosystems are being built based  
on agile, flexible and automated IP/optical infrastructures that can support current and future cloud 
service requirements. 

The two main types of interconnect ecosystems are optical data center interconnect (DCI) and IP data 
center interconnect. Optical DCI involves connecting AI infrastructures using optical networking or optical 
transport. Optical DCI can be designed as a point-to-point, mesh or ring topology depending on the 
number of data centers and the resiliency requirements. The Nokia sixth-generation super-coherent 
Photonic Service Engine (PSE-6s) enables massive network scale with the industry’s first 2.4 Tb/s coherent 
transport solution. It enables network operators to scale transport capacity to unprecedented levels  
across metro, long-haul and subsea networks.

IP DCI connects distributed AI infrastructure domains through IP technology. The Nokia family of FP5-based 
routers offers industry leading capacity and speed. These routers are the first to introduce 800GE routing. 
Deploying these routers can enable an operator to triple IP network capacity in the same space and  
energy footprint.

Reference designs with  
Nokia data center fabric solution
Optimizing AI infrastructure designs for scale, performance and cost 
Networking for AI workloads is highly dependent on the processing requirements for AI applications.  
The network design considerations differ significantly between AI training and AI inference infrastructures. 
Emerging AI use cases and applications typically need to handle a massive number of parameters and 
data sets as part of the process for training the AI model. This can drive the need for tens to hundreds 
to thousands of specialized GPUs and similar accelerated processors, which are installed in AI servers 
(compute). The back-end network that connects these servers is dependent on the number of GPUs 
installed per server as well as the number of servers implemented for a particular AI training deployment. 

With AI training, the workflows associated with the GPUs need to communicate with each other without  
any network delay and loss. The GPUs are high-cost, processing-intensive devices. Any idle time caused  
by to network delay has a negative impact on GPU performance and utilization as well as the overall JCT. 

As shown in Figure 11, the network for AI workloads will need to support varying AI server and GPU 
requirements. A performance-optimized design will typically have a building block of up to eight GPUs per 
server, with each GPU associated with a NIC, requiring a total of eight NICs for this peformance-optimized 
design option. A design that has less stringent performance and processing requirements may adopt 
building blocks with fewer GPUs and NICs. 

High-performance GPUs typically support internal GPU-to-GPU communication through GPU 
interconnects.7 Traditionally, inter-GPU communication shares the same bus interconnect as CPU-to- 
GPU communication such as Peripheral Component Interconnect Express (PCIe). PCIe is a high-speed 

7	 Li, A et al. “Evaluating Modern GPU Interconnect: PCIe, NVLink, NV-SLI, NVSwitch and GPUDirect”. White paper. Retrieved 9 August 2024.

https://www.nokia.com/blog/enhance-cloud-services-with-high-capacity-interconnection/
https://www.nokia.com/networks/optical-networks/pse-6s/
https://www.nokia.com/networks/technologies/fp5/
https://www.nokia.com/networks/technologies/fp5/
https://www.nokia.com/networks/what-is-800ge-routing/
https://arxiv.org/pdf/1903.04611
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serial communication computer expansion bus standard that may become a bottleneck for GPU-to-GPU 
communication. For example, NVIDIA NVLink is a high-speed connection for GPUs and CPUs formed by  
a robust software protocol that typically rides on multiple pairs of wires printed on a computer board.8  
It lets processors send and receive data from shared pools of memory at lightning speed. Now in its fourth 
generation, NVLink connects hosts and accelerated processors at rates up to 900 Gb/s.

Figure 11: Performance- and cost-optimized design options
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Rail-optimized design
A rail-optimized design (Figure 12) uses NVLink technology to enable GPUs within a server to communicate 
directly with each other, as well as enable optimized inter-server GPU-to-GPU communications.9

Figure 12: Rail-optimized design for maximum performance
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8	 Merrit, R. “What is NVLink?”. NVDIA blog post. Retrieved 9 August 2024.
9	 Mandakolathur, K and Jeaugey, S. “Doubling all2all Performance with NVIDIA Collective Communication Library 2.12”. NVIDA blog post. Retrieved 9 August 2024.

https://blogs.nvidia.com/blog/what-is-nvidia-nvlink/
https://developer.nvidia.com/blog/doubling-all2all-performance-with-nvidia-collective-communication-library-2-12/
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In Figure 12, NIC#0 in Server 1 and NIC#0 in Server 2 are connected to the same switch: Leaf node#0. 
Similarly, NIC#1 in Server 1 and NIC#1 in Server 2 are connected to Leaf node#1, and so on for each  
NIC within each of the servers to create dedicated rails. This design approach is referred to as a rail-
optimized design. 

The dotted orange arrow shows message flow between GPU#0 in Server 1 to GPU#3 in Server 2 where  
no NVIDIA Connection Communications Library (NCCL) are used. The message flow would originate  
from GPU#0 in Server 1 and traverse through Leaf node#0, Spine node#0 and Leaf node#3 on the  
way to GPU#3 in Server 2, through three hops of network nodes, resulting in traffic slowdown.

The dashed green arrow shows message flow between GPU#0 in Server 1 to GPU#3 in Server 2 where 
NCCL features are used. The NCCL features leverage connectivity between GPUs within Server 1 to first 
move data from GPU#0 to GPU#3 in Server 1 on the same rail as the destination, and then send it to  
the destination (GPU#3 in Server 2) without crossing rails. This enables optimized traffic flows and  
reduces traffic flow through the spine layer, helping to reduce overall network design costs.

This rail-optimized topology, also called a rail-strip, is a fundamental building block of the back-end 
network cluster for supporting AI applications. An operator can easily scale out this topology by adding 
multiple rail strips interconnected over a layer of spine switches. 

Nokia reference design for a single-stage back-end network
Figure 13 depicts the available Nokia data center platform choices for a single-stage back-end network 
design implemented using fixed-configuration platforms. These platforms support redundant power and 
fan subsystems. This back-end network design may implement a pair of fixed-configuration platforms  
to address additional redundancy considerations for the control plane.

Figure 13: Single-stage back-end network with fixed-configuration platforms
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Figure 14 depicts a variant of the single-stage back-end network design implemented using a modular 
configuration chassis. These platforms support redundant control, fabric, power and fan subsystems, 
offering a compact and redundant platform footprint. 

This design approach can support network connectivity for a small to medium configurations  
with tens to hundreds of GPUs, along with server connections from 100GE up to 800GE speeds.
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Figure 14: Single-stage back-end network with modular platform
Back-end network
Platform choices: Nokia 7250 IXR-6e/10e/18e
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Nokia reference design for rail optimized back-end network
Figure 15 depicts the available Nokia data center platform choices for a rail-optimized back-end network 
design implemented using a choice of fixed-configuration platforms or modular configuration chassis. 
Fixed-configuration platforms support redundant power and fan subsystems. Modular configuration 
chassis support redundant control, fabric, power and fan subsystems. 

Rail-optimized designs help deliver lower-latency, high-performance and efficient GPU communication. 
They use GPU interconnect technologies to optimize the way traffic flows through the networking 
interconnects. 

These designs enable the implementation of very-large-scale GPU designs and high-capacity network 
configurations that can support network connectivity for medium to very large configurations that  
include thousands to tens of thousands of GPUs, along with support for server connections at 100GE  
up to 800GE speeds. The basic building block depicted in Figure 15 can be extended to scale in a modular 
manner to support GPU designs that include tens of thousands of GPUs.

Figure 15: Rail-optimized back-end network design
Back-end network
Platform choices: Nokia 7250 IXR-6e/10e/18e, 
Nokia 7250 IXR-X1b/X3b, Nokia 7220 IXR-H4, Nokia 7220 IXR-D4/D5
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Nokia reference design for dedicated storage back-end network 
Figure 16 shows the available Nokia data center platform choices for a dedicated storage back-end 
network design implemented using a choice of fixed-configuration platforms or modular configuration 
chassis. Fixed-configuration platforms support redundant power and fan subsystems. Modular 
configuration chassis support redundant control, fabric, power and fan subsystems. This design supports 
server connections at 100GE up to 800GE speeds. 

Figure 16: Dedicated storage back-end design
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Nokia reference design for a front-end network 
Figure 17 shows the available Nokia data center platform choices for implementing a front-end network. 
The front-end network supports connectivity for general-purpose and AI inference workloads. Nokia 
provides a comprehensive family of next-generation data center platforms that support 800GE, 400GE, 
100GE, 50GE, 40GE, 25GE, 10GE and 1GE port speeds for data center spine, leaf and management 
roles. The Data Center Fabric portfolio is complemented by the flagship Nokia 7750 Service Router (SR) 
platforms, which can be deployed at the data center gateway to support IP backbone connectivity, IP  
DCI and IP peering roles.

https://www.nokia.com/networks/ip-networks/7750-service-router/
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Figure 17: Front-end network leaf–spine design
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Conclusion
AI and ML will continue to transform the way industries and businesses are run. They promise to  
help improve operational efficiency and foster innovation while providing new business opportunities, 
unlocking new revenue streams and revolutionizing the user experience across a range of sectors.

Networking plays a critical role in the implementation of AI training and inference infrastructure.  
Ethernet is rapidly becoming a preferred choice for back-end networks, which complements its ubiquity 
and current dominance in front-end network designs. The evolving work of the Ultra Ethernet Consortium 
(UEC) will continue to drive enhancements that will make Ethernet the best option for implementing  
AI infrastructures. 

The Nokia Data Center Fabric solution includes a comprehensive portfolio of data center hardware 
platforms for implementing high-performance leaf–spine designs for back-end and front-end networks. 
This portfolio is designed and optimized to support high-capacity, low-latency and lossless back-end 
networks that meet the most stringent AI training requirements. It includes an extensive choice of 
hardware platforms in varying form factors to support front-end network designs that interconnect  
AI inference compute, non-AI compute and shared storage resources based on deployment needs. 

Additionally, the requirement for AI models to be served closer to end users (AI inference at the edge of 
the network) is driving the need for reliable, high-performance interconnect across the AI infrastructure 
domains. The Nokia Optical DCI and Nokia Data Center Gateway solutions are ready to meet all current  
and evolving distributed AI connectivity requirements.

https://www.nokia.com/networks/data-center/data-center-fabric/
https://www.nokia.com/optical-networks/data-center-interconnect
https://www.nokia.com/data-center/data-center-gateway
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Abbreviations
AI	 artificial intelligence

API	 application programming interface

APU	 accelerated processing unit

BGP	 Border Gateway Protocol

BSS 	 business support system

CNP	 Congestion Notification Packet

CPM	 Control Processor Module

CPU	 central processing unit

CSP	 communications service provider

DCI	 data center interconnect

DCQCN	 Data Center Quantized Congestion  
	 Notification

DIY	 do it yourself

ECN	 Explicit Congestion Notification

EVPN	 Ethernet Virtual Private Network

gNMI	 gRPC Network Management Interface

GPT	 Generative Pre-trained Transformer

GPU	 graphics processing unit

GPUaaS	 GPU as a service

GRH	 global routing header

gRPC	 gRPC Remote Procedure Calls

HCA	 Host Channel Adapter

HPC	 high-performance computing

IDC	 International Data Corporation

IMM	 Integrated Media Module

IoT	 Internet of Things

IP	 Internet Protocol

IT	 information technology

JCT	 job completion time

LLDP	 Link Layer Discovery Protocol

LLM	 large language model

LPU	 language processing unit
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ML	 machine learning

NAS	 network-attached storage

NCCL	 NVIDIA Connection Communications 
	 Library

NDK	 NetOps Development Kit

NIC	 network interface card

NLP	 natural language processing

NOS	 network operating system

NVM-e	 NVM Express

OSS	 operations support system

OT	 operational technology

PCIe	 Peripheral Component Interconnect 
	 Express

PFC	 Priority Flow Control

PSE	 Photonic Service Engine

RDMA	 Remote Direct Memory Access

RoCE	 RDMA over Converged Ethernet

SAN	 storage area network

SerDes	 Serializer/Deserializer

SME	 small and medium enterprise

TCO	 total cost of ownership

TCP	 Transmission Control Protocol

TPU	 tensor processing unit

UDP	 User Datagram Protocol

UEC	 Ultra Ethernet Consortium

UET	 Ultra Ethernet Transport

VXLAN	 Virtual Extensible Local Area Network

XPU	 auxiliary processing unit

YANG	 Yet Another Next Generation
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