
&----

BELL TELEPHONE LABORATORIES
INCORPORATED

THE INFORMATION CONTAINED HEnCIN IS FOR
THC USE OF cMPLOYc Es OF DELL TELEPHONE
t.Am0RA70RIEs, INCORPORATED. AND IS NOT
FOR PuBLICATION

COVER SHEET FOR TECHNICAL MEMORANDUM

TITLE QED Text Editor MM~–~–&_

1373 -3
—

CASE CHARGED– 7010’7-002 DATE– June 22, 1970

FILING CASES --- 70107-002 AUTHOR -- D. M. Ritchie
K. L. Thompson

FILING SUBJECTS– Text editing

[)
Ext. 3770 MH

Text manipulation 2394 MH
String manipulation

ABSTRACT

QED is an interactive text editing program available
under GE-TSS on the GE-635 computer. It is much more powerful
than most previous editing systems.

QED deals with both GE-TSS ASCII and card image
files. It offers the ability to rearrange arbitrary blocks
of text, to execute user-specified and pre-existing macro
command sequences, and a very general text location and
replacement capability.

This memorandum provides a complete reference
manual for QED.

-
Text - 17 pages
References
Appendix - 6 pages

E-1932- C-4 (8-681
SEE REVERSE SIDE FOR DISTRIBUTION LIST

●

@

~Ublac~QED Text Editor - Case 70107-002

-

MEMORANQIJ FOR FILE——

Introduction

date:June 22, 1970

from:D. M. Ritchie
K. L. Thompson
MM-70-1373-3

1371-2

QED is an interactive text editor available under GE-TSS on
the GE 635. QED has been characterized as hard to learn but
easy to use. In any event, it is much more powerful than
most editors; its text manipulation facilities approach
those of SNOBOL.

This memorandum is a reference manual for QED. It is a
descendant of [1], and contains a complete description of
the editor as well as an Appendix with a short reference
guide and several examples.

Since this document attempts to be as complete as possible,
it is not easy to read. QED novices are advised to use B.
W. Kernighan”s excellent lCATutorial Introduction to the QED
Text EditorOt [2]. The subset of QED described therein is
roughly equivalent in power to the GE-TSS EDIT SUbSySteIIi,

and will be enough to satisfy many users? editing needs.
Most remaining features of QED are explained and exemplified
in the same author--s “A Guide to Advanced Use of the QED
Text Editortt[3].

The original QED was implemented at the University of
California, Berkeley [4]. Substantially redesigned versions
were written by the second author (KLT) for the CTSS system
at MIT [1] and in BCPL for MULTICS. The latter version has
also been available under GE-TSS using 1/0 routines supplied
by A. W. Winikoff.

This version ~ ~

The present incarnation of QED was implemented in GMAP by
the first author (DMR). It offers noticeable improvements
in speed, program size, and text packing density over the
BCPL version, of which it is a direct descendant. New
facilities include a redesigned Global command and a
numerical capability.

.

-2-

Unlike many editors, QED stores all the text it is working
on in core. This gives rapid access to all the text, even
if it is addressed randomly, but it also means that only a
bounded amount of text can be edited at one time. This
amount varies with several factors, but with the usua1 TSS
core limit (32K) QED can process 45- or So-block files.
(This is equivalent to about 30 pages of text like those in
this manual.) However, both cost and response time increase
with core usage, so very large files should be avoided.

QED is reasonably economical of computer time. For ordinary
editing, connect charges always exceed those for CPU and
1/0; complicated text processing, especially on large files,
can become expensive.

All text in QED is stored in buffers. At any time there is--—
a current buffer to which most commands implicitly refer.
In each buffer there is a current line which is changed by
most editor commands. The current line is taken as a
default address for several commands. The current buffer
initially is buffer “O”. Text enters a buffer only by ex-
plicit means: for example, it may be typed in or read from a
file. Text is never filed away automatically; instead it
must be written explicitly on a named file. QED does not
use the “*SRC” file, although it may be read and written.

The syntax of QED is concise and very regular. There are a
number of commands each of which is one character long.
Most commands have names intended to be reminiscent of their
function. Each command is preceded by zero or more addresses
specifying lines in the current buffer.

.——.
Some commands are

followed by parameters as well. In general any number of
commands may be typed on a line; however, no command may
follow the G, L, 0, Q, R, V, or W commands on the same line.

QED uses the ASCII character set internally. It can read
and write both GE-TSS ASCII and GE-Hollerith card
files.

image

Syntax conventions ~ ~~~ ganual

Double and single quotes are used with their usual meaning
except in obvious instances for example in the discussion
of the ‘t’” (quote) command. Angle brackets are used to en-
close the names of QED syntactic categories: “<regexp>”
stands for a regular expression: in the next paragraph and
elsewhere, Il<nl>llstands for the ASCII newline character.
Angle brackets are totally without special mean ing to QED
itself.

-3-

The characteg <nl>—

The ASCII <nl> character (tlnewline”) separates lines. It
may be typed by means of the “line spacet’key on the 37
Teletype. However, the character <cr> (carriage return) is
translated to <nl> when read from a file or the typewriter
keyboard. Since the action character for GE-TSS is <cr>, it
will be used most often. Users of <nl> should note, however,
that at most 80 characters can be input between <cr>s and
that the Iiline deletell (control X) sequence destroys
everything up to the last <cr>, including intervening <nl>s.

Regular expressions— ——

Regular expressions are a unique feature of QED. A regular
expression is a pattern which specifies a set of strings of
characters; it is said to match certain strings.—— Regular
expressions are used in QED to specify text which is to be
replaced by other text and in searching for lines satisfying
some condition. Regular expressions are defined rigorously
as follows.

a) An ordinary character is a regular expression which
matches that character.

b) II ’11 is a regular expression which matches the null
character at the beginning of a line.

c) W$ll is a regular expression which matches the null
character before the character <nl> (usually at the end
of a line) .

d) 11-u is a regular expression which matches any character
except <nl>.

.-

e) I’[<string>]”is a regular expression which matches any of
the characters in the <string> and no others.

f) ‘~[-<string>]tt is a regular expression which matches any
character but <nl> and the characters of the <string>.

q) A regular expression followed by “*” is a regular expres-
sion which matches any number (including zero) of adja-
cent occurrences of the text matched by the regular ex-
pression.

h) l’WO adjacent regular expressions form a regular expres-
sion which matches adjacent occurrences of the text
matched by the regular expressions.

i) Two regular expressions separated by $lll!form a regular
expression which matches the text matched by either of
the regular expressions.

.

-4-

-

j) A regular expression in parentheses is a regular expres-
sion which matches the same text as the original regular
expression. Parentheses are used to alter the order of
evaluation implied by g), h), and i): Ila(b[c)dllwill
match “abd” or “acd”, while I’ablcd”matches ‘tab”or “cd”.

k) If ‘~<regexp>liis a regular expression, “(<regexp>]x” is a
regular expression, where z is any character. This
regular expression matches the same things as <regexp>;
it has certain side effects as explained under the Sub-
stitute command.

1) If <rexname> is the name of a regular expression named by
the E command (below), then “\E<rexname>Ol is a regular
expression which matches the same things as the regular
expression specified in the E command. More discussion
is presented under the E command.

m) The null regular expression standing alone is equivalent
to the last regular expression encountered. Initially
the null regular expression is undefined; it also becomes
undefined after an erroneous regular expression and after
use of the E command.

n) Nothing else is a regular expression.

o) No regular expression will match text spread across more
than one line.

In subsequent discussion, “<regexp> “ will denote a regular
expression.

Here are some examples of regular expressions. In each case
the expression is bounded by ‘t/’$.

/abed/ matches “abcdt’anywhere in a line.

/ablcd/ matches ~iab”or lt~ttanywhere in a line=

/ab*c/ matches ~tact’,ltabc$O,“abbcil,~labbbc”,

/“begin/ matches ~Sbegint’at the beginning of a line.

/end$/ matches ~cendl!at the end of a line.

/-beqin.*end$/ matches any line beginning with O’begin”and
ending with “end”.

/-$/ matches an empty line.

/abc[1234567890]/ matches “abc” followed by a digit.

/abc[-1234567890]/ matches ~labcf’followed by a non-digit.

.

-5-

Buffer names

-

Text may be stored in any of many buffers. Buffers are
named by sequences of 14 or fewer characters not including
the character <nl>. A buffer name is represented by II(tl
followed by the characters comprising the name followed by
Il)$t.If the name is exactly one character long, it need not
be placed in parentheses. Some examples of buffer names
are: Ilotl,“(xYz)”# l’(x)” (which is the same as “xI’), and
Il(ab c)!’. Inside buffer names the character “\B” has no
special meaning (see ~tEditorInputtlbelow) .

Subsequently, <bufname> will indicate a buffer name.

Reqister names

There are also many number ~ist~~ whose names are con-
structed according to the same=ules as buffer names.
Number registers may be changed and set by the N command
described below. There is no relation between a given
number register and the buffer of the same name. In subse-
quent discussion, <regname> will indicate a register name.

The condition reqister

Finally, there is a condition register which contains either——-— -- —---
true or false. Several commands—— —— set this register, as
discussed below; it can be tested and used to control the
flow of QED programs. It should be noted that the condition
register is seldom used for

Text addressinq

Lines in the current buffer
lowing ways.

1) Ey current line number.

ordinary editing tasks.

may be addressed. in the fol-

A-decimal number addresses the line at the corresponding
position of the current buffer. The first line is num-
bered 1. The number of a line may change during editing.

2) By absolute line number.
The character ““” followed by a decimal number is inter-
preted as an absolute line number. Absolute line numbers
are assigned to a buffer after a successful read command,
and never change otherwise. New lines created during
editing have undefined absolute line numbers. The
character ““~’not followed by a digit causes a search for
the first undefined absolute line number after the cur-
rent line and cycling to the current line. If there is
no line with the specified absolute line number, an error

.

-6-

“-

3)

4)

5)

6)

message is given.

By cl.tt.
The value of . isIIt! the current line. This value is
changed by most QED commands.

By u$II.

The value of ‘1$11is the last line in the current buffer.
Its line number may change during editing.

By context.
The structure “/<regexp>/l’ causes a search for a line
containing text that matches the regulaz expression. The
search begins at the line after the current line and
cycles forward to the current line. If the search is
successful, the value of C1/<regexp>/l~is the line found.

The structure ~t?<regexp>?llis just like ‘~/<regexp>/” ex-
cept that it searches backwards beginning with the line
before the current line.

If commands are being taken from the console, context
searches that fail will be noted as errors. A search
that fails while commands are being taken from a buffer
causes the buffer recursion level to be dropped by one.
See also the text directive “\B1lbelow.

By additive combinations of 1-5.
fio addresses separated by “+” or “-” also form an ad-
dress. The value is obvious. Evaluation is done left to
right. At no time during evaluation of an address may
the address exceed the bounds of the buffer. In unam-
biguous cases, the !o+ttneed not appear: 11*+111and Iloltt

are identical in value.

Editor Input
.

The input to QED is a stream of characters. The following
sequences are interpreted as directives to the stream and do
not perform an editing function directly.

The sequences are removed from the stream as they perform
their function. It should be noted that each of these se-
quences is regarded by QED as a single character; inter-
nally, in fact, they are stored as otherwise unused ASCII
control characters. Thus one cannot create a ll\CtOcharacter
from a “Cl~by substituting in a “\”. These characters are
effective if and only if they appear as part of
stream (including the <text> which is part
mands) .

Letters following “\” may be in either case.

the command
of some com-

.

-7-

-

-

\B<bufname>
This sequence causes the input stream to be diverted to
the buffer <bufname>. At the end of this buffer input
reverts back to its original source. The stream is also
switched back if a context search fails. Upon occurrence
of any error the input is switched back to the console
after printing the remaining contents of the buffer cur-
rently being executed. (This is a useful debugging aid
for QED programs.) “\B” may be used recursively to any
level.

\R
This character causes input to be switched to the console
for one line of input. On this line, no stream directive
characters are effective. The <nl> character ending the
line is discarded.

\c
This character causes the next character to be taken
literally, ignoring any special meaning the character may
have in the current context.

\N<regname>
This sequence is replaced by the digits corresponding to
the contents of number register <regname>. See the N
command below.

\E
This character is special only in regular expressions.
See the E command and the discussion of regular expres-
sions.

Escape sequences

Certain characters are impossible to generate on certain
devices, and the commercial-at siqn “6)”cannot be input to
TSS at- all. The escape sequences on the left
in lieu of the characters listed on the right.

\A a
\({
\) 1
\! I
\\
\< ;
\> j
\“
\ddd 7-bit character represented

are accepted

by ddd

The “\\tfescape is used because the character II\t! followed
by any character is taken as a single character. In l*\dddll,

the d-s are octal digits. The characters \OOO and \777 have
internal meaning and are entered at one-s risk.

-8-

Text input

There are a number of QED commands that expect literal text
as argument. This text must be preceded by a space or a
<nl> character, which is discarded. The text itself con-
sists of an arbitrary string of characters terminating in
ll\Fll. The ‘t\Fttis not itself part of the text but only
serves to delimit it. Subsequently, It<text>$lwill indicate
literal text input.

Editor commands

Commands may require zero, one, or two addresses. Commands
which require no addresses regard the presence of an address
as an error: those which require one or two addresses use
the last one or two addresses and ignore the extras.

In the list of commands below,
shown with no addresses.

The commands which require one
which is shown in parentheses.

the zero-address commands are

address all assume a default,
The parentheses are not part

of the address, b~t are used to show that the address given
is the default.

Likewise, the two-address commands all assume default ad-
dresses given in parentheses. If a two-address command is
typed with only one address, that address is used for both
those required.

Sequences of two or more addresses are separated either by
CC,$!or by II;I$. In the latter case . isIIII set to the
preceding address before the succeeding address is
evaluated. The semicolon is used mostly to control the
starting line for context searches.

The following is a list of QED-S conmand repertoire. Com-
mands which are letters may appear in either case.

A) ($)A<text> Append.

The text input is placed after the addressed line. “.”
is set to the last line input. If no text was input, “.t!
is set to the addressed line.

B) E<bufname> Buffer.

Buffer <bufname> becomes the current buffer. If the
buffer already existed, its previous value of “.” becomes
the current value of “.”. Initially the current buffer
is “O”.

-.

c)

D)

E)

F)

G)

(.,.)C<text> Change.

The addressed lines are
text. ‘~.’~is set to

-9-

deleted and replaced by the input
the last line input. If no lines

were input, “.~cis set to the first line not deleted.
The addressed lines cannot cross line O (circularly).

(oc~)D Delete.

The addressed lines are deleted. “.1ois set to the first
line not deleted. The addressed lines cannot cross line
O (circularly).

E<rexname>/< regexp>/ Enter

The E command gives the regular expression <regexp> the
name <rexname>. The syntax of <rexname>s is the same as
that of <bufname>s and <regname>s. The regular expres-
sion <rexname> may be referred to in a regular expression
by the construct

\E<rexname>

~l\Ellhas no special significance outside of regular ex-
pressions.

The empty regular expression, which normally means the
last regular expression encountered, cannot be used for
the <regexp> in the E command; also, the empty regular
expression becomes undefined after an E command.

Regular expressions named by the E command may contain
the “\E” construction. Recursive regular expressions are
allowed, but left recursive expressions do not work.
(They do not, however, loop.) Examples of the use of E
and \E are given in the Appendix.

F Facts

The F command causes QED to type out 1) the number of
words on QED-S 1°freelistc’, 2) the highest memory loca-
tion used for text storage, and 3) the current core al-
location. When the third number gets near 32K, take care
not to exceed the core maximum.

(l,$)G/<regexp>/<commands><nl> Global.

The remainder of the line after ll/<regexp>/l~is placed
into a hidden buffer. Each line addressed which matches
the <reaexD> is marked. Then for each marked line the

-1o-

commands in the hidden buffer are executedc with “.” set
at the marked line. The commands G, L, Q, R, V, and W
may not be executed within a G command. At the conclu-
sion of the command, “.1’is set at the point where it was
left by the last command executed. Any character but
space or <nl> may be used instead of “/” to bound the
<regexp>.

If it is desired that the <commands> contain a <nl>, \C
should precede the <nl> in order to prevent it from term-
inating the Global command.

I) (.)I<text> Insert.

Text input is inserted before the addressed line. ‘l.’~is
set to the addressed line. Note that ~fI~fis differs from
11A!?in its default address as well as in the placement of
the <text>.

J) JT<commands> Jump on true
JF<commands> Jump on false

This instruction tests the condition register and IIjumpstt
according to its value. If the condition register is
true, the JT command causes the rest of the line to be
ignored; conversely, a false condition register causes JF
to skip. Otherwise the rest of the line is interpreted
normally.

The condition register is set by R, W, S, Y, and-T com-
mands.

K) (.,.)K<nl> Sort
(.,.)KB<nl>

In’the first form of the K command the addressed lines
are sorted in increasing ASCII collating sequence. In
the second form descending sequence is used.

L) L <filestring><nl> List.
L6 <filestring><nl>
L<nl>

The file is printed on the console. The value of “.” is
unchanaed. In the first form, the file is ASCII; in the
second, it consists of card images. If
lowed directly by <nl>, the file of the
last mentioned in a L, R, or W command
also “File 1/0~8 (below).

the O~Lllis fol-
name and type
is listed. See

-11-

M) (.,.)M<bufname> Move.

The addressed lines are removed from the current buffer.
ClII- . in the current buffer is set to the line following
the last line moved. The entire contents of buffer <buf-
name> are deleted, and then replaced by the addressed
lines. “.” in the named buffer is set to its last line.
The named kuffer can be the current buffer.

N) N<regname><character><number> Number.

This command modifies a number register named <regname>.-—— .
The value of the number register can be retrieved by the
sequence “\N<regname>” (See “Editor Input” above) . The
following <characters may be used:

.. The <number> is assigned to <regname>.

+ The <number> is added to <regname>.

The <number> is subtracted from <regname>.

* <regname> is multiplied by <number>.

/ <regname> is divided by <number>.

% <regname> becomes <regname> modulo <number>.

p The contents of <regname> are printed on the con-
sole. <number> is ignored.

d Whenever <regname> is retrieved by a “\N”, it will
have at least <number> digits; leading zeros will
be supplied to pad. (Initially thlS number of
digits is one.)

O) O<optionlist><nl> Options

The O command sets various editing options. The fol-
lowing options may be used in the <optionlist>:

v Verbose
Whenever QED is in text input mode (after At C, or I
commands) the prompt character “*” is supplied at the
beginning of each line. This feature may be useful
to those who forget their “\F’’”s.

s Silent
This option annuls the effect of option V.

T<number>,<number>, ... Tabs
QED turns tab characters into spaces when writinq

-12-

Hollerith card image files, and tabs are inserted and
deleted by the Z command (below). The tab settings
8, 16, 24, 32, ... are the default. The Tabs option
changes the tab settings. As many tabs as desired
may be set but no tab setting may go into a column
beyond 73. Tab characters occurring in columns
beyond the rightmost tab stop are treated as spaces.

o special characters Qut
After an option O, the following regular expression
metacharacters are treated as ordinary characters:

●
☛ () {} [\E- $ I

The special effect of these characters in regular ex-
pressions may be restored locally by preceding them
by ll\Cfl.

I special characters @
This character annuls the effect of option O.

P) (.,.)P Print
<addr><nl>

<nl>

The addressed lines are printed on the console. 10.” is
set to the last line printed. The addressed lines cannot
cross line O (circularly). A completely empty line is
equivalent to ~1.+lpl’.

Q) Q<nl> Quit.

QED returns to the ‘Isystem?’$level.

R) ($)R <filestring><nl> Read.
($)R6 <filestring><nl>
($)R<nl>

The file is read and appended after the addressed line.
to.ttis set to the last line read. The size of the file
in blocks, the number of lines read, and the number of
characters read are printed on the console provided the
command is not executed from a buffer. In the first
form, the file is ASCII; in the second, it is a card
image file. If the ltR’Ois followed directly by <nl>, the
file of that name and type last mentioned in L, R, or W
commands is read. If the command is executed from a
buffer, the condition code is set to true to reflect a——
successful read, otherwise to false. In this case, no
error is given, since it is assumed that a program will
test the condition register if desired.

-13-

S) (.,.)S/<regexp>/<string>/ Substitute.

—
Occurrences of <regexp> in the addressed lines are
replaced by <string>. .*I?1 is set to the last line in
which a substitution took place. The character ll<in

the <string> has a value equal to the text matched by the
<regexp>. If a construct of the form 1°{<regexp2>}x” was
used in the <regexp>, the character “XC’has value equal
to the text matched by <regexp2>.

Any character but space or <nl> may be used instead of
11/11to bound the <regexp>.

If any substitutions took place, the condition register
is set to true, otherwise to false. It is not an error— ——
for a substitution to fail.

T) (.,.)T/<regexp>/ Test

The T command attempts to find an instance of the
specified <regexp> among the specified lines: if success-
ful, the condition register is set to true, otherwise to
false. II.11 is left unchnged. The usually illegal ad-
dress ~~OClis legal for the T command, so

0,$T/$/

tests whether there are any lines in the current buffer
and never gives an error. (“l,$T/$/” would be erroneous
if the current buffer were empty=)

V) (l,$)V/<reqexp>/<commands><nl> Exclude.

.-

This command is exactly like the t’G*~command, except that
the commands are performed in lines W& matching the
<regexp>.

W) (l,$)W <filestring><nl> Write.
(1,$)W6 <filestring><nl>
(l,$)W<nl>

The addressed lines are written into the file. The
number of blocks, the number of lines, and the number of
characters written will be printed. The value of “.” is
not changed. In the first form the file will be ASCII;
in the second, 14-word Hollerith card images. If IIW!Iis

followed directly by <nl>, the file is written with the
name and type of the last file mentioned in Lc R~ or W
commands. If the file cannot be opened for writing, a
temporary file of the given name is created and a diag-
nostic printed. When the W command is executed from a

‘-

x)

Y)
--

z)

-

:)

=)

-14-

buffer, the condition register is set to indicate the
success of the W command, and no error comment is given.

X Status.

The name, value of “.”, and value of “$” of the current
buffer and all non-empty auxiliary buffers are printed on
the console. The value of I’llis unchanged.

(.,.)Y/<stringl>/<string2>/ Transform.

Occurrences of the characters in <stringl> within the ad-
dressed lines are replaced by the corresponding character
of <string2>. <stringl> and <string2> must be the same
length , and no character may appear twice in <stringI>.
The value of O1.”is set to the last line in which any
character was transformed. The condition register is set
to true if any characters were transformed, otherwise to
false. Any character but space or <nl> may be used in-
stead of “/” to bound the strings.

(l,$)ZI Tabs ~n
(1,$)20 Tabs @t

In the first form of the command, every sequence of one
or more spaces that ends on a tab stop is converted to a
tab character. In the second, each tab character is ex-
panded to the right number of spaces according to the
current tab stops. Tabs are set by the OT command (see
above) . Neither 21 nor 20 treats backspace and other
non-graphics as special characters, so even if logical
tab settings correspond with physical settings visual ap-
pearance is not necessarily preserved. Furthermore, tab
itself is not a special character during 21.

:C.Uis set to the last line altered.

($) : Absolute line.

The absolute line number of the addressed line is
printed. If the absolute line number is undefined, “?l’
is printed. “.” is set to the addressed line.

($) = Current line.

The addressed line-s number is printed. 11.stis set tO

the addressed line.

.

-15-

!) ! <TSS command> Escape to TSS

When l~!llis encountered the remainder of the line is sent
to GE-TSS to be executed. The command

!filsys ...

is particularly useful.

“) (.)’’<anythingbut <nl>><nl> Comment.

The remainder of the line is ignored. II-IIis set tO the
addressed line.

Usaqe

At ltsystem?~1levelc type

./qed

or the equivalent using lodx.—.

Whenever the break key on the teletypewriter is depressed or
the ASCII character NULL is sent, QED will stop what it is
doing, return to its command level and respond with “?11”
(i. e., error number 11). This feature is particularly use-
ful for interrupting long printouts. Caution should be ex-
ercised to avoid sending a second break before the first has
taken effect; this is likely to return the user to the
~tsystem?lllevel of GE-TSS, with consequent loss of the work
in progress.

Core overflow

During the day, GE-TSS limits the user to 32K of core of
which about 3.3K is used by the QED program. The remainder
can be used for text storage, and it amounts to about 50
blocks (“llinks”) worth. Unfortunately, TSS aborts a
program which asks for mre core than TSS is willing to
qive. Therefore, as a safety feature, QED will simulate an
interrupt as its core size passes 31K. If an unexpected er-
ror 11 (“?11”) occurs, use the F command to discover whether
memory is about to overflow.

-16-

Line O—— —

.

-

The following description of the way buffers are stored is
sometimes useful to know. The lines in each buffer are cir-
cularly linked, with a special, always empty, llline 01!

between lines 1 and $. That is, near the end of the buffer,
the order of lines is ... $-2, $-1, $, 0, 1, 2. Line
O cannot be printed, deleted, or in any way changed; its
presence becomes noticible occasionally because ‘l.10may be
left at line O by, for example, deleting line $. Certain
searches can find this line, for example tl/-/Il. (But not
!1/-$/11,since the It$II requires a newline to be present.)
Finally O can sometimes be used as an address: ‘OOasCand “Oroo
place text at the beginning of the buffer. (Note that “Oi”
puts the text at the end!)

File 1/0—-- .

QED accepts filenames in catalogs other than the user”s
master catalog provided no more than two “/”s are present.
passwords and alternate names are not accepted, and both
file and catalog names must be 8 or fewer characters in
length.

In order to guard against an unfortunate bug in TSS, the
following strategy is used when opening files. If the file
was not open (in the AFT) , and QED is able to access it with
the proper permissions, all is well. If the file is being
read, all is assumed to be well. Otherwise, if a file is in
the AFT, QED will deaccess it and then attempt to reoPen it.
This is necessary because if a file is in the AFT with the
wrong permissions, an 1/0 command to the file will cause QED
to be aborted. There is no way to discover the permissions
attached to a file in the AFT.

As mentioned under the W command, if a file cannot be opened
for writing (usually because it dces not exist) QED will
create a temporary file which the user must deal with out-
side of QED.

QED will write TSS-format ASCII and 14-word (84 column) GE
Hollerith card image files. It will read TSS ASCII and card
image files the records of which may vary in length.

Bootstrapping

QED will automatically read in and execute files containing
QED commands. This feature is useful in preparing QED
programs for general use. If QED is invoked by the fol-
lowing command line

.

.-

-17-

./qed filename argl arg2 ...

then “r filename” is placed in buffer “f”~ argl, arg2, ...
are placed in separate lines in buffer “O”: buffer “f” is
executed to read filename into buffer “=”8 and finallY
buffer U.1~is executed. This feature is implemented by ex-
ecuting the following commands from a hidden buffer:

bO I’startin bO
a \R
\F ~~readcommand line
1,$s/ */\c
/ “split into separate lines
ld I*delete1~./qed”
O;/./mfmf Somovefilename (if there) to bf
bf l’editfilename
Is/-/r / ~’makeR command
b. - ~lmoveto
\Bf ~lexecute
bO Ilbackto

\B . “execute

The use of the bootstrapping feature
last example in the Appendix.

Comments—

Comments on the
are welcome.

MH-1373-DMR

References
Appendix - 6 pages

buffer .
read
bO
file read in

is illustrated in the

(syntax!semantics) of the (paperIprogram)

&. h - Ki’&G
D. M. Ritchie

.

.

-18-

REFERENCES

[1] Thompson, K. L., “QED Text Editor,” Multics Repository
Document BO080, February, 1967.

[2] Kernighan, B. W., 11ATutorial Introduction to the QED
Text Editor,’t MM-70-1373-6 (June, 1970).

[3] ---------------- l#A Guide to Advanced Use of the QED
Text Editor,” MM170-1373-7 (July, 1970).

[4] Deutsch, L. P. and B. W. Lampson, “An Online Editor,”
CACM 10, 12 (December, 1967).—

L

APPENDIX

This Appendix provides a quick-reference summary of QED and
several examples of its use.

—
Commands
The bracketed numbers give the page number on which to find
the description of the command.

A) ($)A<text>
B) B<bufname>
C) (.,.)C<text>
D) (.,.)D
E) E<rexname>/<regexp>/
F) F
G) (l,$)G/<regexp>/<commands><nl>
I) (.)I<text>
J) JT<commands>

JF<commands>
K) (.,.)K<nl>

(.,.)KB<nl>
L) L <filestring><nl>

L6 <filestring><nl>
L<nl>

M) (.,.)M<bufname>
N) N<regname>: <number>

N<regname>+<number>
N<regname>-<number>
N<regname>*<number>
N<regname>/<number>
N<regname>%<number>
N<regname>p<number>
N<regname>d<number>

o) Ov
0s
00
01
0T<number>8<number>, ...

P) (.,.)P
<addr><nl>

<nl>
Q) Q<nl>
R) ($)R <filestring><nl>

($)R6 <filestring><nl>
($)R<nl>

S) (.,.)S/<regexp>/<string>/
T) (.,.)T/<regexp>/
V) (l,$)V/<regexp>/<commands><nl>
W) (l,$)W <filestring><nl>

- (1,$)w6 <filestring><nl>
(l,$)W<nl>

x) x
Y) (.,.)Y/<string>/<string>/
z) (I,$)zo

(l,$)ZI
:) ($):
= ($)=
!; !<TSS command>
#t) (.)’’<anything><nl>

Append [8]
Buffer [8]
Change [9]
Delete C9]
Enter r. e. [9]
Facts on core size [9]
Global [9]
Insert [10]
Jump if true [10]
Jump if false
Sort (increasing) [10]

(decreasing)
List [10]

Move [n]
Number (assign) [11]

(add)
(subtract)
(multiply)
(divide)
(remainder)
(Frint)
(set digits)

option (Verbose) [11]
(Silent)
(r. e. chars Out)
(r. e. chars In)
(Tab setting)

Print [12]

Quit [12]
Read [12]

Substitute [13]
Test for <regexp> [13]
Exclude [13]
Write [13]

Status [14]
Transform [14]
Tabs Out [14]
Tabs In
Absolute line # [14]
Current line # [14]
Escape to TSS [15]
Comment [15]

~qnostics

-A2-

-

-

-

?0

?1

?2

?3
?4
?5
?6
?7
?8
?9
?10
?ll
?12

Internal buffer overflow
RE search failed
Unrecognized command or address
RE syntax error
Address syntax error
Address wrap around (e.g. 5,2p)
Address out of tuffer
Absolute line search failed
Inaccessible file
Command syntax error
Bad status during 1/0 (usually EOF during write)
Interrupt or memory warning
Cannot open output file; temporary created instead

Reqular ~ression metacharacters.—. .-

;

[
*

I
()
\E<rexname>
(]<char>

Null character at beginning of line
Any character but <nl>
Null character before <nl>
Start of character class
Kleene closure
Alternation
Grouping
Named regular expression
Tagged regular expression
(makes <char> a substitute metacharacter)

substitute metacharacters_—-- ----

& Matched text

Stream directive and esca~ characters— — --— ———--

\B Expand buffer
\R Read console
\F End input mode
w Insert number
\c Take next character literally
\E Introduce name of regular expression
\A a
\\ \
N(
\) ;
\!
\< :
\> j
\=
\ddd ASCII character ddd

L

-A3-

Examples—

1) Creating text.

The following commands create a file of little import and
write it out.

a
Here are some commands
which create a file of
little import
and write it out.
\f
w litimp

2) Moving text.

The commands

/abed/,$ml
Oa \bl\f

first move several lines from the end of the current buffer
to buffer 1. Then the lines are inserted at the beginning
of the current buffer.

3) Correcting mistakes.

The command

l,$s/speling/spelling/

changes every instance of “speling” to “spelling”. BetterC
the command

l,$s/{Sls}Xpeling/Xpelling/

works even if IIspelingllis sometimes capitalized.

4) Deleting line numbers.

The command

1,$s/-[0123456789]*//

will remove line numbers as defined in GE-TSS FORTRAN from a
buffer.

. .

-A4-

5) Adding line numbers.

The command sequence

,. -

n (counter):1
n (counter]d5
g/-/s ““\c~ (counter)#y n(counter) +10

will add line numbers (as defined by CARDIN) to a buffer
beginning with 00001 and incrementing by 00010.

6) Verification of substitution.

The command

g/ABCD/p\c\rs//PQRS/

will print each line in which tlABCDt’is found and pause. If
“<nl>- is typed, “PQRS” will be substituted. If “’<nl>- is
typed, the s~bstitution will not take place. Note the
of ll\cllto postpone interpretation of “\r” until the G
mand is executed.

7) Macro expansion.

The command

l,$s/ADDMAC ([-,]*]1,{[-,]*)2,[[-,]*}3/LDA
ADA 2\c
STA 3/

turns lines like

ADDMAC

into

LDA
ADA
STA

P1,SYMB,RES

P1
SYMB
RES

Note the use of “\c~’to insert <nl> into the right-hand
of the substitution.

8) Global move.

The command

g/ab\c$cd/ m(temp) bla \c\b(temp)\f

use
com-

1\c

side

+ .

-A5-

-

moves all lines containing ‘tab$cdl’to buffer 1. The lines
are appended to the buffer and do not replace it. Cl\ct$is

used to remove the special meaning of “$” in the left side
of the substitution and to prevent the expansion of buffer
“texnp”during reading of the global command.

9) Summing a table.

Suppose buffer O is the current buffer and each line con-
sists of a number: all of these numbers are to be added
together. The following commands suffice:

n(sum) :0
l,$s/-/n(sum) +/
\BO

That is, each line in the current buffer becomes like
!In(S~) +<number>” ; then the buffer is executed to form the
sum.

10) The use of “\Et!

The command

e(alph)/[abcdefghi jklmnopqrstuvwx?y]/

makes O’\E(alph)“ refer to the set of lower case letters. The
regular expression

/\E(alph)/

will search for a lower case letter. The regular expression
“\E(bal)” defined by

e(bal)/[-”-]*(’\E(bal)“)*[-””]*/

matches any string balanced with respect to single quotes
lls!l-d #@@Il.

It should be noted that the ability to define regular ex-
pressions recursively makes the term “regular expression” a
misnomer: it is not hard to see that expressions can be
constructed to match exactly the members of any given con-
text-free language.

11) A useful program.

Here is an edited version of a QED program written by S. C.
Johnson. (Read also ~~./filelist~lfor more information.) When
called by

-A6-

./qed ./list filel file2 ...

the program writes a control card file on *SRC and uses
~~./rjf’to submit it to the batch world. The batch program
will list the named files on the high-speed printer. It
uses a file which the user must supply, called IDENT. The
first line of IDENT should contain the user-s UMC name: the
second, the $IDENT card to head the control card file.
Subsequent lines may contain $USERID and $LIMITS cards if
desired. (Note: the actual I’./list”uses a sliqhtly dif-
ferent format for the
automatically.)

bl
r ident
lm2
bO
l,$v”/- s“-*%/a
b2
1s/-/1,$s”%”/
s/$/”/
bO
\B2
1,$s/”/$ prmfl
g/prmfl/i\C
$ select
\F
a
$ endjob
\F
bl
v/-\C$/d
$a
\BO\F

w *src
!./rj
q

IDENT file and will create this file

l’readIDENT file into buffer 1

~lrnoveUMC name to buffer 2
f~editfilenames
Iladdcl%/c~to lines without “/”
l~editUMC name
SIUMCbecomes lfl,$s”%”UMC~l
l~b2becomes “l,$S”%”UMC’10

~leditlist of files
~lexecuteb2 = I,$s”%”UMC”
in,C~/ “make $PRMFL cards

cc/list\C
~linsert $SELECT before each $FRMFL card

IIadd$ENDJOB card
“edit remaining part of IDENT file
“remove all but $control cards

~~append$SELECT and
Ilwrltefile on *SRC

$PRMFL cards
ready for O’./rj”

