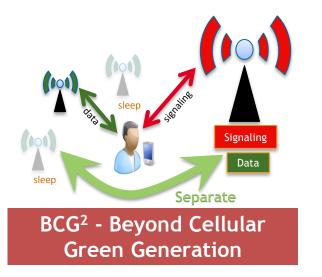
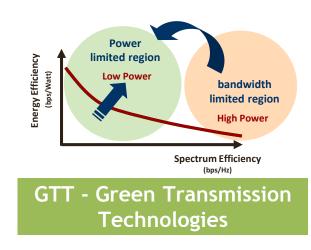
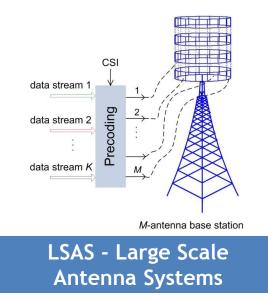


Green Meter for Mobile Networks



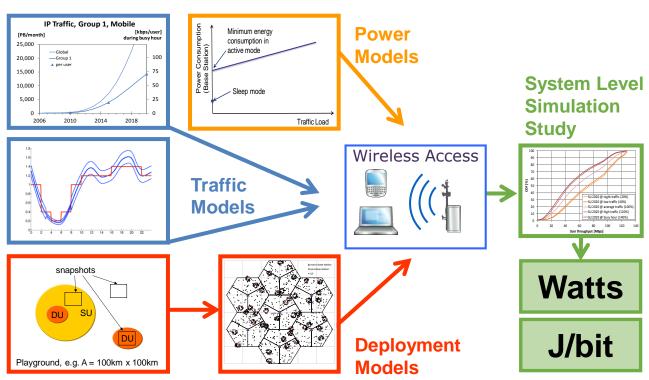


Green Approaches to a Future Mobile Networks Architecture


CHALLENGE AND BREAKTHROUGHS

Enabling fully dynamic operation of macro and small cell networks by introducing a separate control layer

Leveraging Interference control, Multi-User MIMO and CoMP for adaptive radio transmission


Massive MIMO antenna arrays for directed transmission and minimized interference

Three Technology Directions Studied and Combined to the Best Possible Architecture

Green Meter Methodology for Wireless Access

KEY ACCOMPLISHMENT AND RESULTS

Providing scientifically sound simulation models for the Green Meter study

- Temporal and spatial traffic models derived from operator data
- Scalable base station power models
- Quality of Service requirements
- Aggregation to a nation wide mobile network

Comprehensive Modeling for Quantitative Performance Simulations

Computation of the GreenTouch Gain Factor for Mobile Networks

89x Traffic

Reference 2010

- LTE rollout, replacing legacy deployment
- Reusing existing sites
- Full coverage in all areas
- 4 competing operators serving the market
 - Performance evaluation at 2010 traffic level

J/bit

Watt

GreenTouch 2020

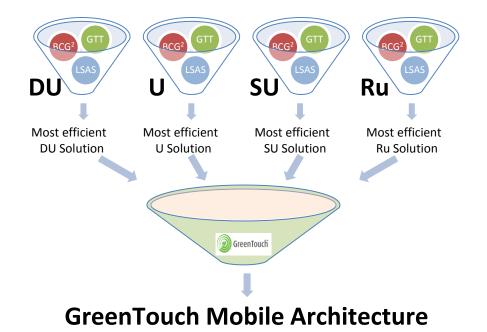
- Strictly optimized deployment with shared infrastructure
- Best projected 2020 hardware components
- Selection of BCG², GTT, LSAS technologies

Performance evaluation at 2020 traffic level

Providing the Best Achievable Energy Efficiency and Energy Consumption Gains

Improvement

Factors



GreenTouch Wireless Access Architecture

KEY ACCOMPLISHMENT AND RESULTS

Technology	Daily energy intensity [J/Mb]			
	DU	U	SU	R
2010 Reference	1989	5528	6126	10849
BCG ²	0.24	0.6	2.33	2.74
GTT	0.37	0.75	0.88	2.08
GTT with BCG ² Layer	0.26	0.39	0.50	1.47
LSAS with BCG ² Layer	0.14	0.52	2.41	6.62

Mobile Architecture Enables a Total Efficiency Gain of 10,000x and Reduction of Annual Energy Consumption by 99% Compared to 2010 Reference Scenario

