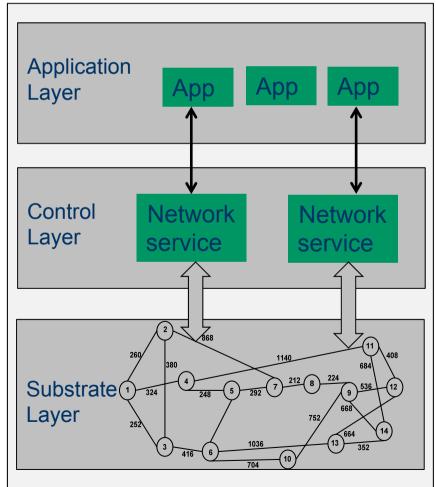
Green Network and Data Centre Virtualization

Leonard Nonde, Taisir El-Gorashi and Jaafar M. H. Elmirghani

School of Electronic and Electrical Engineering

University of Leeds, UK

j.m.h.elmirghani@leeds.ac.uk

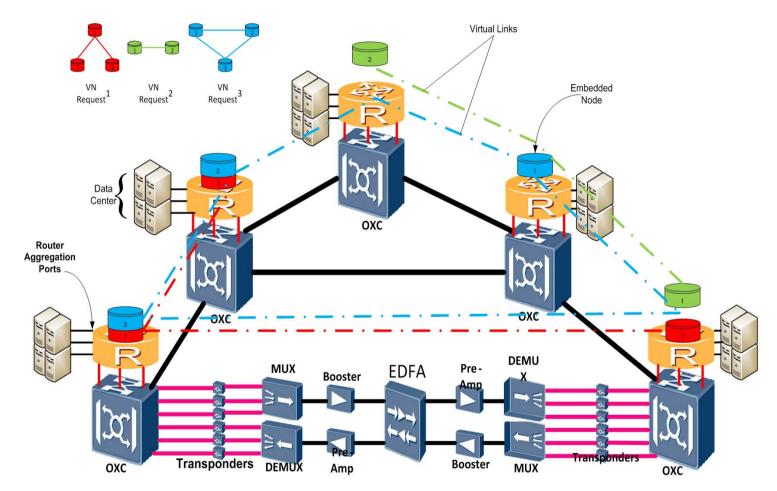


- Software-Defined Networks and Virtualization
- EEVNE in IP over WDM Networks
 - MILP Model
 - Real Time Energy Optimized Virtual Network Embedding (REOVINE) Heuristic
- Performance Evaluation
 - Energy Inefficient Data Centre Power Profile
 - Embedding of VNRs under Non Uniform Load Distribution
 - Energy Efficient Data Centre Power Profile
 - Location and Delay Constraints
- EEVNE in IP over WDM Networks with Optimal Data Centre Locations
- EEVNE in O-OFDM Cloud Network
- Summary

- Software-Defined Networks and Virtualization
- EEVNE in IP over WDM Networks
 - MILP Model
 - Real Time Energy Optimized Virtual Network Embedding (REOVINE) Heuristic
- Performance Evaluation
 - Energy Inefficient Data Centre Power Profile
 - Embedding of VNRs under Non Uniform Load Distribution
 - Energy Efficient Data Centre Power Profile
 - Location and Delay Constraints
- EEVNE in IP over WDM Networks with Optimal Data Centre Locations
- EEVNE in O-OFDM Cloud Network
- Summary

Software Defined Networks (SDN)

- In Software defined networking (SDN) network control is decoupled from forwarding (physical infrastructure) allowing:
 - Centralization of control
 - Direct programmability of devices
 - Flow based control
 - Vendor neutrality
- A range of network services can be supported on the substrate network driven by the applications.



Energy Minimization with SDN

- SDN can provide dynamic and elastic network adptation to changing traffic, application, and user demands
- It can help avoid network resources overprovisioning by dynamically scaling provisioned resources.
- This can lead to efficient resource utilization and energy saving.

- Software-Defined Networks and Virtualization
- → EEVNE in IP over WDM Networks
 - MILP Model
 - Real Time Energy Optimized Virtual Network Embedding (REOVINE) Heuristic
- Performance Evaluation
 - Energy Inefficient Data Centre Power Profile
 - Embedding of VNRs under Non Uniform Load Distribution
 - Energy Efficient Data Centre Power Profile
 - Location and Delay Constraints
- EEVNE in IP over WDM Networks with Optimal Data Centre Locations
- EEVNE in O-OFDM Cloud Network
- Summary

Network Virtualization

- Solution to the current ossifying forces of the Internet
- Allows the existence of several heterogeneous networks in one physical network
- Enabler of Energy Savings through resource consolidation

Total Power Consumption

Network Power Consumption

Power consumption of router ports:

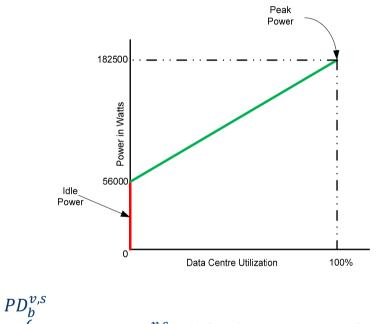
 $\sum_{m \in N} PR \cdot \left(Q_m + \sum_{n \in N_m} W_{m,n} \right)$

Power Consumption of transponders:

 $\sum_{m \in N} \sum_{n \in N_m} PT \cdot W_{m,n}$

Power Consumption EDFAs:

$$\sum_{m \in N} \sum_{n \in N_m} PE \cdot EA_{m,n} \cdot F_{m,n} \cdot \lambda_{m,n}$$


Power Consumption of Optical Switches:

$$\sum_{m\in N} PO_m$$

Power Consumption of multi/demux :

 $\sum_{m \in N} PMD \cdot DM_m$

Energy Inefficient Data Centre Power Profile

 $= \begin{cases} P_{idle} + \mu \cdot CPU_{b}^{v,s} & if the data centre at b is ON \\ 0, & otherwise \end{cases}$

The power consumption of data centers is given as:

$$\sum_{b \in N: DO_b = 0} \sum_{v \in V} \sum_{s \in R} CPU_b^{v,s} \cdot \delta_b^{v,s} \cdot \mu + K_b \cdot P_{idle}$$

MILP Model for EEVNE

Objective: Minimize

$$\sum_{m \in N} PR \cdot \left(Q_m + \sum_{n \in N_m} W_{m,n} \right) + \sum_{m \in N} \sum_{n \in N_m} PT \cdot W_{m,n} + \sum_{m \in N} \sum_{n \in N_m} PE \cdot EA_{m,n} \cdot F_{m,n} \cdot \lambda_{m,n}$$
$$+ \sum_{m \in N} PO_m + \sum_{m \in N} PMD \cdot DM_m + \sum_{b \in N: DO_b = 0} \sum_{v \in V} \sum_{s \in R} CPU_b^{v,s} \cdot \delta_b^{v,s} \cdot \mu + K_b P_{idle}$$

Subject to (Including):

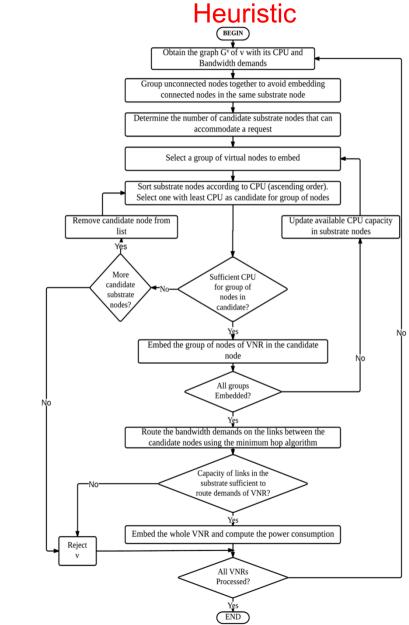
Node Embedding

$$\sum_{v \in V} \sum_{s \in R} CPU_b^{v,s} \cdot \delta_b^{v,s} \le CPU_b \qquad \forall b \in N$$

$$\sum_{b \in N} \delta_b^{v,s} = 1 \quad \forall v \in V, \qquad s \in R$$

 $\sum_{b \in N} \sum_{s \in R} CPU_b^{v,s} \cdot \delta_b^{v,s} = \Psi^v \sum_{b \in N} \sum_{s \in R} CPU_b^{v,s} \quad \forall v \in V$

Link Embedding


$$\begin{split} \delta_b^{\nu,s} + \delta_e^{\nu,d} &= \omega_{e,b}^{\nu,d,s} + 2 \cdot \rho_{b,e}^{\nu,s,d} \\ \forall \ \nu \in V \ b, e, s, d \in N \colon b \neq e, s \neq d \end{split}$$

$$\sum_{b \in N} \sum_{e \in N: b \neq e} \sum_{s \in R} \sum_{d \in R: s \neq d} \mathbf{H}^{v,s,d} \cdot \rho_{b,e}^{v,s,d} = \Phi^{v} \sum_{s \in R} \sum_{d \in R: s \neq d} \mathbf{H}^{v,s,d}$$
$$\forall v \in V$$

$$\Phi^{\nu} = \Psi^{\nu} \quad \forall \nu \in V$$

$$\sum_{v \in V} \sum_{s \in N} \sum_{d \in N: s \neq d} \mathbb{H}^{v,s,d} \cdot \rho_{b,e}^{v,s,d} = L_{b,e} \forall b, e \in N: b \neq e$$
9

Real Time Energy Optimized Virtual Network Embedding (REOViNE)

10

- Software-Defined Networks and Virtualization
- EEVNE in IP over WDM Networks
 - MILP Model
 - REOVINE Heuristic
- ➔ Performance Evaluation
 - Energy inefficient data centre power profile
 - Embedding of VNRs under Non Uniform Load Distribution
 - Energy efficient data centre power profile
 - Delay and location constraints
- EEVNE in IP over WDM Networks with Optimal Data Centre Location
- EEVNE in O-OFDM Cloud Network
- Summary

Performance Evaluation

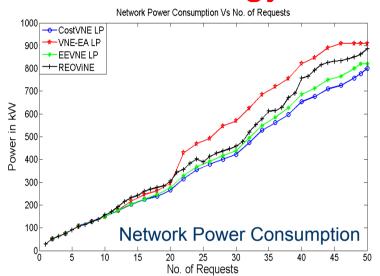
- Each node hosts a small data centre with 500 Servers.
- The number of nodes in a single virtual network request is uniformly distributed between 2 and 6.
- The CPU demand of nodes in the virtual network request is uniformly distributed between 2% and 10% of the total CPU resources in the data centre.
- The BW on the links of the virtual network request is also uniformly distributed between 10Gbps and 130Gbps.

324

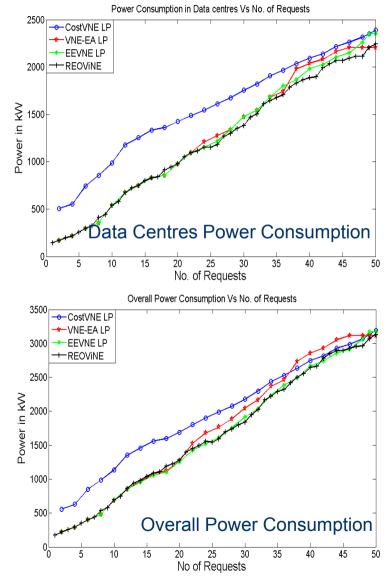
Substrate Network (NSFNET)

	Distance between two neighboring EDFAs	80 (km)
	Number of wavelengths in a fiber (W)	32
	Number of Fibers per link $(F_{m,n})$	1
	Capacity of each wavelength	40 (Gbps)
	Power consumption of a transponder (PT)	73 (W)
	Power consumption of a single router port (PR)	1000(W)
	Power consumption of an EDFA (PE)	8 (W)
n	Power consumption of an optical switch (PO)	85 (W)
,10	Power consumption of a multi/demultiplexer (PMD)	16 (W)
~	Dell Server full load power consumption	365 (W)
e	Dell Server idle power consumption	112 (W)
е	Data Centre idle power consumption (500 servers)	56000 (W)

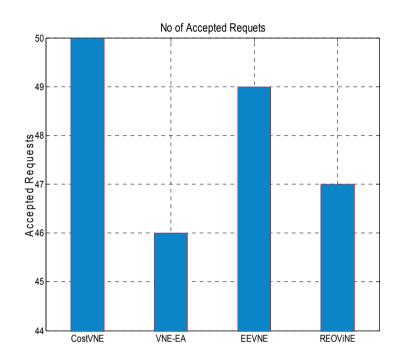
[1] Houidi, I., et al., Virtual network provisioning across multiple substrate networks. Comput. Netw., 2011. 55(4): p. 1011-1023. [2] Botero, J.F., et al., Energy Efficient Virtual Network Embedding. Communications Letters, IEEE, 2012. 16(5): p. 756-759.

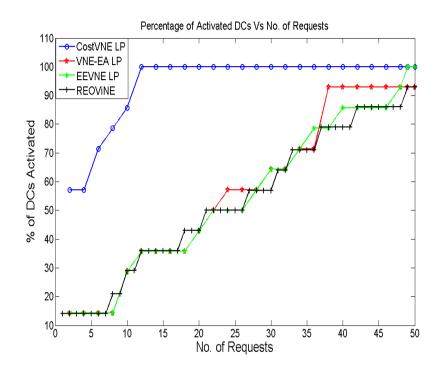

Input Parameters

The CostVNE Model Objective [1] minimize $\sum_{m\in N}\sum_{n\in N_m}W_{m,n}$ The VNE-EA Objective [2] minimize $\sum_{m \in N: NO_m = 0} \sigma_m + \sum_{m \in N} \sum_{n \in N_m: LO_{m,n} = 0} \beta_{m,n}$

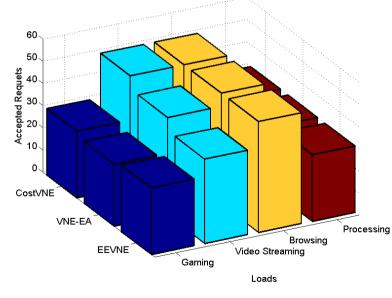


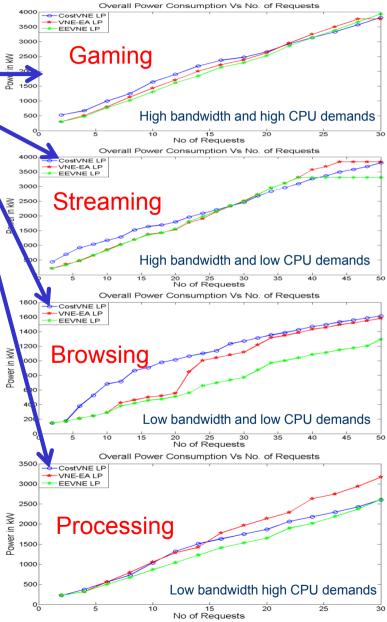
where σ_m and $\beta_{m,n}$ are binary variable to indicate the active nodes and links, respectively in the substrate network


Energy Inefficient Data Centre

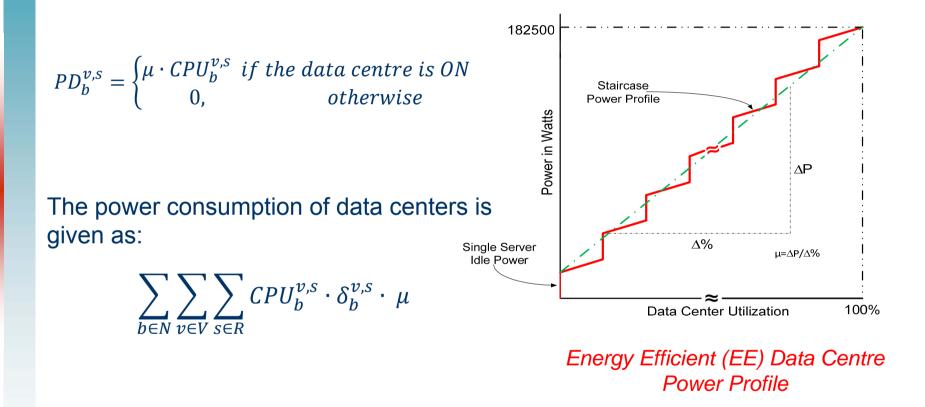

- The EEVNE model saves 60% (Maximum) of the overall power consumption compared to the CostVNE model (20% Average).
- The EEVNE model saves 9% (Maximum) of the overall power consumption compared to the VNE-EA (3% Average).
- The REOVINE heuristic approaches the EE-VNE model in terms of the network power consumption.

Energy Inefficient Data Centre

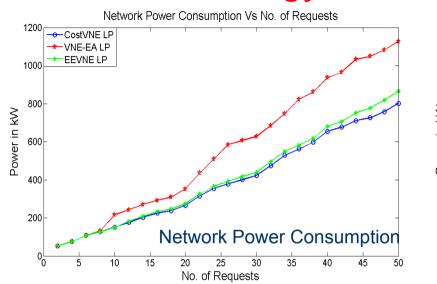

- The CostVNE model accepts all the requests because it uses the wavelengths efficiently.
- The worst performer in this case is the VNE-EA Model.


- Cost model activates more data centres at Low Loads than the EEVNE, VNE-EA model and EOVNE heuristic.
- The VNE-EA model activates more DCs as the load increases in the Network.
 14

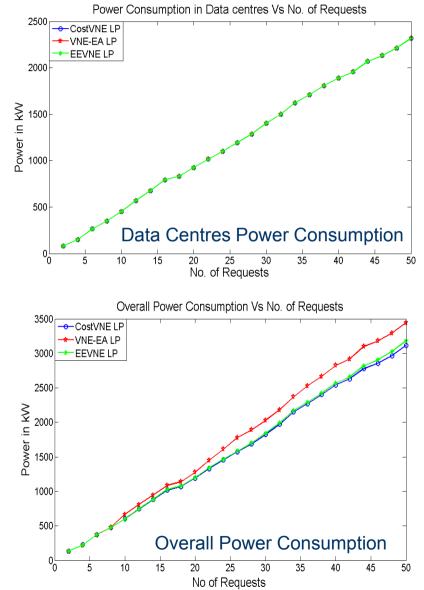
Embedding of VNRs of Non Uniform Load Distribution


Load	Distribution
High bandwidth and high CPU	CPU (9% to 10% of data center capacity)
demands (Load 1) Gaming	Bandwidth demand (100Gb/s to 130Gb/s)
High bandwidth and low CPU	CPU (2% to 3% of data center capacity)
demands (Load 2) Streaming	Bandwidth demand (100Gb/s to 130Gb/s)
Low bandwidth and low CPU	CPU (2% to 3% of data center capacity)
demands (Load 3) Browsing	Bandwidth demand (10Gb/s to 15Gb/s)
Low bandwidth high CPU	CPU (9% to 10% of data center capacity)
demands (Load 4) Processing	Bandwidth demand (10Gb/s to 15Gb/s)

Number of Accepted Requests

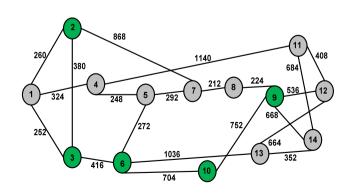


Energy Efficient Data Center

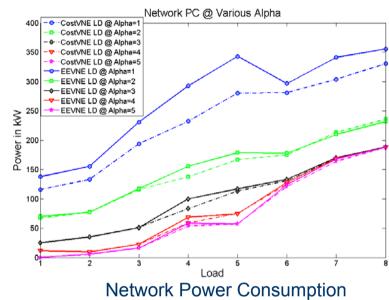


• Only the servers needed to serve a given workload are activated.

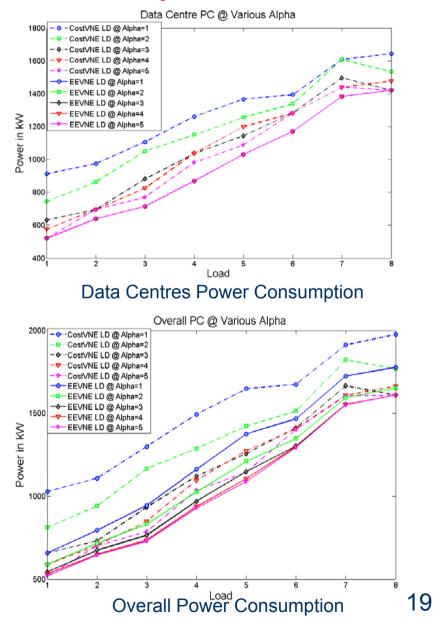
Energy Efficient Data Centre


 Power savings only occur in the network making the CostVNE the most energy efficient.

EEVNE with Location and Delay Constraints


- VNR are star topologies with the master node in the center and protection or load balancing nodes connected to it.
- The number of master nodes located in a substrate node is proportional to its population.
- We consider a scenario where we embed 15 virtual network requests and evaluate the power consumption versus an increasing load of CPU and bandwidth.
- Node consolidation factor (α) is a measure of how many nodes of a VNR can be embedded in the same substrate node.
- A maximum propagation delay of 7.5ms is allowed.

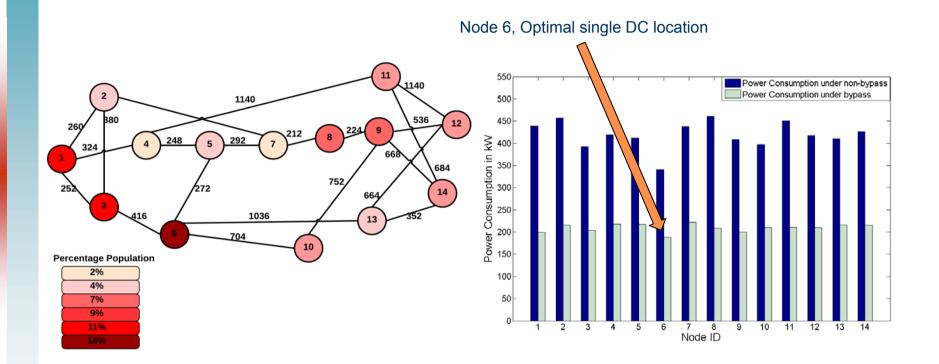
Load	CPU Percentage Workload Distribution	Link Bandwidth Distribution
1	1% - 5%	10Gbps – 40Gbps
2	3% - 7%	20Gbps – 50Gbps
3	5% - 9%	30Gbps – 60Gbps
4	7% - 11%	40Gbps – 70Gbps
5	9% - 13%	50Gbps – 80Gbps
6	11% - 15%	60Gbps – 90Gbps
7	13% - 17%	70Gbps – 100Gbps
8	14% - 19%	80Gbps – 110Gbps



Master Node Locations

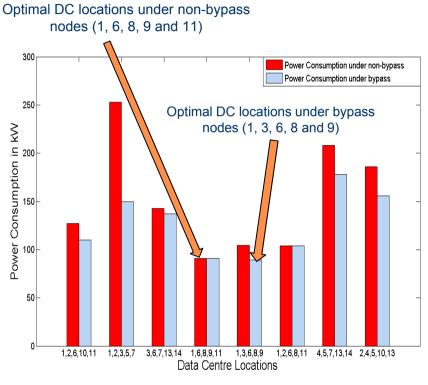
EEVNE with Location and Delay Constraints

- EEVNE saves 18% over CostVNE at α =1 and 5% at α =5.
- For the EEVNE the transition from α =1 to α =2 saves 10% subsequent increases in α have smaller savings.

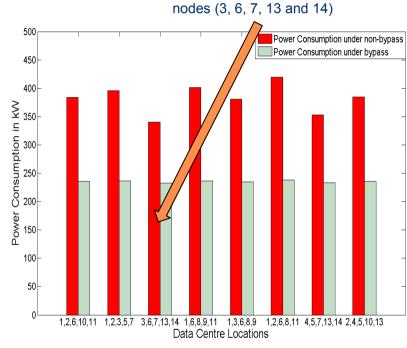


- Software-Defined Networks and Virtualization
- EEVNE in IP over WDM Networks
 - MILP Model
 - REOVINE Heuristic
- Performance and Evaluation
 - Energy inefficient data centre power profile
 - Embedding of VNRs under Non Uniform Load Distribution
 - Energy efficient data centre power profile
 - Delay and location constraints

→ EEVNE in IP over WDM Networks with Optimal Data Centre Location


- EEVNE in O-OFDM Cloud Network
- Summary

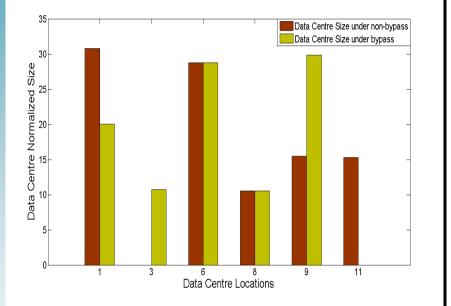
EEVNE with Optimal Data Centre Location


- 45 Clients distributed over all the 14 nodes based on population.
- With a single DC: 26% and 15% power saving for non-bypass and bypass approaches, respectively compared to the worst possible location.

EEVNE with Optimal Data Centre Location

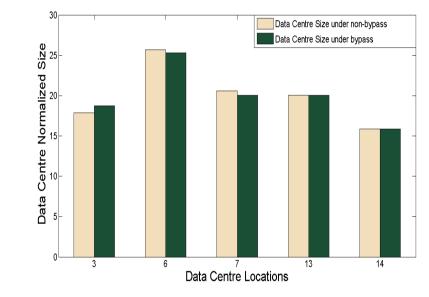
Five DCs Optimal Locations at α =5

 43% and 55% power saving for non-bypass and bypass approaches, respectively compared to the worst possible locations.


Optimal DC locations

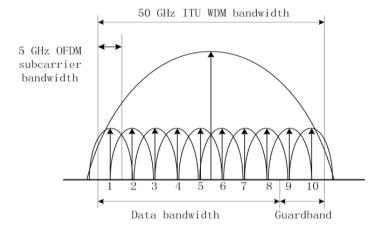
Five DCs Optimal Locations at α =1

- 19% power savings under the non bypass approach.
- Under bypass at α=1, the power consumption is the same regardless of the location of the data centres.

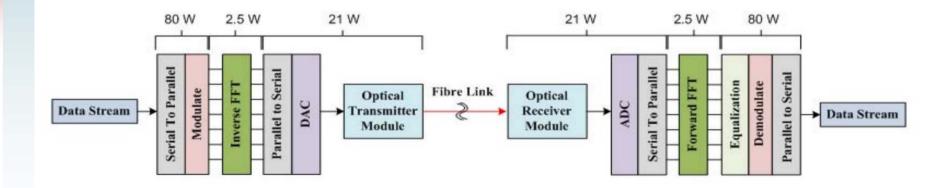

EEVNE with Optimal Data Centre Location

DC Size at α=5

- DCs 1 and 6 have highest concentration of VMs under nonbypass
- DCs 6 and 9 have highest concentration of VMs under bypass


DC Size at α=1

- DC 6 has highest concentration of VMs under both non-bypass and bypass
- Even distribution of VMs across all DCs


- Software-Defined Networks and Virtualization
- EEVNE in IP over WDM Networks
 - MILP Model
 - REOVINE Heuristic
- Performance and Evaluation
 - Energy inefficient data centre power profile
 - Embedding of VNRs under Non Uniform Load Distribution
 - Energy efficient data centre power profile
 - Delay and location constraints
- EEVNE in IP over WDM Networks with Optimal Data Centre Location
- → EEVNE in O-OFDM Cloud Network
- Summary

VNE in Optical OFDM Networks

Spectrum utilization of WDM networks and optical OFDM based networks

The maximum line rate for an OFDM transponder LR_{max} is: 5(GHz)x3(Bits/Hz)x8=120Gb/s.

Block diagram of a typical optical OFDM communication system

VNE in Optical OFDM Networks

Power consumption of O-OFDM transponders:

$$\sum_{b \in N} \sum_{e \in N: b \neq e} \left(\sum_{m \in N} \sum_{n \in N_m} x_{m,n}^{b,e} \left(ALR\left(\frac{\sum_{q \in Q} SC_{m,n,q}^{b,e} \cdot M_q}{LR_{max}} \right) \cdot TP_{max} \right) \right)$$

Where ALR() is the ALR power profile function

Objective: Minimize power consumption

$$\sum_{b \in N} \sum_{v \in V} \sum_{s \in R} CPU_b^{v,s} \cdot \delta_b^{v,s} \cdot \mu + \sum_{b \in N} \sum_{e \in N: b \neq e} PR \cdot L_{b,e} + \sum_{b \in N} \sum_{e \in N: b \neq e} \left(\sum_{m \in N} \sum_{n \in N_m} x_{m,n}^{b,e} \left(ALR\left(\frac{\sum_{q \in Q} SC_{m,n,q}^{b,e} \cdot M_q}{LR_{max}}\right) \cdot TP_{max} \right) \right) + \sum_{m \in N} \sum_{n \in N_m} PE \cdot EA_{m,n} \cdot F_{m,n}$$

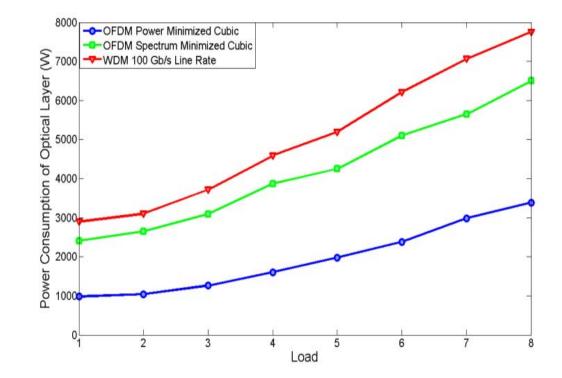

Objective: Minimize spectrum utilization

$$\sum_{b \in N} \sum_{e \in N: b \neq e} \sum_{q \in Q} SC_{n,m,q}^{b,e} \quad \forall m \in N, n \in N_m$$

Performance Evaluation

Power Consumption of Network Devices

Power consumption of a 100Gb/s WDM transponder	135 (W)
Power consumption of an OFDM transponder at	200 (W)
maximum line rate <i>LR</i> _{max}	
Power consumption per Gb/s of an IP router port	25W/Gb/s
Power consumption of an EDFA	8 (W)



Load Distribution


Load	CPU Cores	Link Bandwidth
	Distribution	Distribution
1	1 - 5	10Gb/s – 40Gb/s
2	3 - 7	20Gb/s – 50Gb/s
3	5 - 9	30Gb/s - 60Gb/s
4	7 - 11	40Gb/s – 70Gb/s
5	9 - 13	50Gb/s - 80Gb/s
6	11 - 15	60Gb/s – 90Gb/s
7	13 - 17	70Gb/s – 100Gb/s
8	14 - 19	80Gb/s – 110Gb/s

Cubic Power Profile of an O-OFDM Transponder

The Optical Layer Power Consumption

 VNE of power and spectrum minimized IP over O-OFDM based networks has saved 63% and 17%, respectively of the optical layer power consumption compared to VNE in IP over WDM networks.

• The power minimized O-OFDM based network trades optical spectrum for energy efficiency.

- Software-Defined Networks and Virtualization
- EEVNE in IP over WDM Networks
 - MILP Model
 - REOVINE Heuristic
- Performance and Evaluation
 - Energy inefficient data centre power profile
 - Embedding of VNRs under Non Uniform Load Distribution
 - Energy efficient data centre power profile
 - Delay and location constraints
- EEVNE in IP over WDM Networks with Optimal Data Centre Location
- EEVNE in O-OFDM Cloud Network

→ Summary

Summary

- We have studied energy efficient virtual network embedding in IP over WDM networks and developed a MILP model (EE-VNE) and a heuristic (REOVINE).
- Comparing our model to the bandwidth Cost model (CostVNE), a maximum power saving of 60% (average 20%) is achieved.
- Our model has also improved the energy efficiency compared to the VNE-EA model as a result of its ability to consolidate the use of data centres while optimizing the use of wavelengths.
- Under the energy efficient data centre power profile, savings only occur in the network causing our EE-VNE to minimize the use of network bandwidth.

Summary

- Allowing node consolidation by removing geographical redundancy constraints significantly reduces the power compared to embedding with full geographical redundancy.
- The selection of a location to host a data centre is governed by two factors: the average hop count to other nodes and the client population of the candidate node and its neighbours.
- Compared to VNE in conventional IP over WDM networks, VNE over power and spectrum minimized IP over O-OFDM networks has outperformed the VNE in a 100 Gb/s IP over WDM network with average power savings in the optical layer of 63% and 17%, respectively.

Related Publications

- 1. Nonde, L., El-Gorashi, T.E.H. and Elmirghani, J.M.H., "Energy Efficient Virtual Network Embedding for Cloud Networks," submitted for publication.
- 2. Nonde, L., El-Gorashi, T.E.H. and Elmirghani, J.M.H., "Green Virtual Network Embedding in optical OFDM cloud networks," *Proc IEEE 16th International Conference on Transparent Optical Networks* (*ICTON 2014*), Graz, Austria, July 6-10, 2014.
- 3. Lawey, A., El-Gorashi, T.E.H. and Elmirghani, J.M.H., "Distributed Energy Efficient Clouds over Core Networks," *IEEE/OSA J. of Lightwave Tech.*, vol. 32, No. 7, pp. 1261 1281, 2014.
- 4. Dong, X., El-Gorashi, T.E.H. and Elmirghani, J.M.H., "Green Optical OFDM Networks," *IET Optoelectronics*, vol. 8, No. 3, pp. 137 148, 2014.
- 5. Osman, N. I., El-Gorashi, T.E.H., Krug, L. and Elmirghani, "Energy-Efficient Future High-Definition TV," *IEEE/OSA J. of Light. Tech.*, vol. 32, No. 13, pp. 2364 – 2381, 2014.
- 6. Lawey, A., El-Gorashi, T.E.H. and Elmirghani, J.M.H., "BitTorrent Content Distribution in Optical Networks," *IEEE/OSA J. of Light. Tech.*, vol. 32, No. 21, pp. 3607 3623, 2014.
- Dong, X., El-Gorashi, T.E.H. and Elmirghani, J.M.H., "IP Over WDM Networks Employing Renewable Energy Sources," *IEEE/OSA Journal of Lightwave Technology*, vol. 27, No. 1, pp. 3-14, 2011.
- 8. Dong, X., El-Gorashi, T.E.H. and Elmirghani, J.M.H., "Green IP over WDM Networks with Data Centres," *IEEE/OSA Journal of Lightwave Technology*, vol. 27, 2011.
- Dong, X., El-Gorashi, T.E.H. and Elmirghani, J.M.H., "On the Energy Efficiency of Physical Topology Design for IP over WDM Networks," *IEEE/OSA Journal of Lightwave Technology*, vol. 28, 2012.
- 10. Dong, X., El-Gorashi, T.E.H. and Elmirghani, J.M.H., "Use of renewable energy in an IP over WDM network with data centres," *IET Optoelectronics*, vol. 6, No. 4, pp. 155-164, 2012. 33