

This document is the final submitted version of the following accepted paper:

T. Partanen, A. Mercat, J. Vanne, M. M. Hannuksela, H. Zhang, A. Aminlou, and F. Cricri, "Adaptive luma range

optimization in visual coding for machines", Third IEEE Workshop on Coding for Machines, Sep. 2025.

©2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,

including reprinting/republishing this material for advertising or promotional purposes, collecting new collected

works for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other

works.

ADAPTIVE LUMA RANGE OPTIMIZATION IN VISUAL CODING FOR MACHINES

 Tero Partanen1, Alexandre Mercat1, Jarno Vanne1,

Miska M. Hannuksela2, Honglei Zhang2, Alireza Aminlou2, and Francesco Cricri2

1Ultra Video Group, Tampere University, Finland

2Nokia Technologies, Finland

{tero.partanen, alexandre.mercat, jarno.vanne}@tuni.fi,

miska.hannuksela, honglei.1.zhang, alireza.aminlou, francesco.cricri}@nokia.com

ABSTRACT

The growing prevalence of machine-driven visual data consumption

underscores the need to meet the unique requirements of Video

Coding for Machines (VCM). In this paper, we propose to enhance

the coding efficiency of Versatile Video Coding (VVC) for machine

consumption by adaptively adjusting the dynamic range of the input

luma channel prior to encoding. The visual input is characterized

using the introduced input analyzer that predicts the optimal

dynamic range and provides the corresponding 1) luma down-

scaling factors applied before encoding and 2) luma up-scaling

factors used after decoding to restore the dynamic range. Our input

analyzer is implemented as a lightweight neural network. For the

network training, we introduce a training framework incorporating

a codec proxy module that enables end-to-end optimization by

simulating a conventional non-differentiable video codec. The

proposed method has been evaluated as part of the conventional

VVC pipeline, where VVC test model (VTM) is used for encoding

and decoding. Our experimental results show that integrating the

proposed solution into the pipeline improves coding efficiency by

up to 28.0% on image datasets and up to 45.4% on video dataset for

object detection tasks.

Index Terms—Video Coding for Machines (VCM), Machine

Vision, Neural Networks (NN), Versatile Video Coding (VVC)

1 INTRODUCTION

Machine vision-based visual data analysis has become an integral

part of numerous applications, including smart mobility and

transportation, security and surveillance, healthcare diagnostics, and

industrial automation. These applications critically rely on the

quality and integrity of the visual data they use, necessitating

efficient compression schemes that preserve machine task accuracy

within the limits of available bandwidth and storage space. The

Versatile Video Coding (VVC) standard [1] represents the cutting

edge of visual data compression, approximately doubling the coding

efficiency of its predecessor, High Efficiency Video

Coding (HEVC) [2]. However, these conventional video coding

standards are primarily optimized for human visual perception, so

they tend to yield bitrate overhead in machine vision

applications [3]. To that end, there is an urgent need to adapt modern

visual coding schemes for machine consumption.

Recent standardization activities by the Moving Picture Experts

Group (MPEG) [4] and Joint Video Experts Team (JVET) [5] seek

to address the emerging field of machine-oriented image and video

coding. This domain is typically referred to as video coding for

machines (VCM) [6]. The fundamental objective of VCM is to

develop image and video coding tools that are specifically optimized

for machine-based analysis or hybrid machine-human consumption.

Existing solutions implemented within conventional video

coding schemes, such as VVC, typically involve pre-processing,

encoding optimization, and post-processing techniques [5]. The

techniques for pre-processing and encoding optimization are

predominantly built on region of interest (ROI)-based

methods [7]–[10]. Alternatively, pre-processing may include spatial

downsampling [11], [12] or dynamic range scaling of pixel

intensities [13], wherein the dynamic luma range is downscaled by

multiplying all luma values by a predetermined factor. In contrast,

post-processing techniques mainly include various compression

artifact suppression filters [14], [15], which are tailored to improve

signal fidelity for machine analysis tasks.

In this work, we propose an adaptive luma range optimization

method for VCM. It incorporates an input analyzer module that

analyzes the given input prior to encoding and predicts optimal luma

down-scaling and up-scaling factors. Our previous approach [13]

applied a predetermined and constant luma scaling factor across all

content, whereas the proposed method dynamically adapts to the

visual characteristics of the given input data. This work also

introduces a novel training framework for the input analyzer. The

framework incorporates a codec proxy to enable end-to-end

optimization by simulating a conventional, non-differentiable video

coding pipeline.

The remainder of this paper is organized as follows. Section 2

provides an overview of related pre-processing and post-processing

techniques for VCM. Section 3 describes the proposed coding

pipeline, particularly focusing on the designed input analyzer

module and the novel training framework introduced for it. The

experimental setup is presented in Section 4 and experimental

results in Section 5. The conclusions are given in Section 6.

2 RELATED WORKS

Pre-processing and encoding optimization techniques developed for

VCM primarily aim at bitrate reduction. They are typically

implemented through ROI methods that initially analyze input data

to identify regions considered salient for downstream machine

tasks [5], [7]. The existing ROI-based pre-processing methods

achieve coding gains by either blurring [9] or completely

…

This work was supported by the Research Council of Finland (decision

no. 349216).

suppressing [10] (non-ROI) background regions. The encoding

optimization techniques, on the other hand, use saliency information

to guide the encoder to allocate more bits to ROI regions than to

non-ROI regions [8], [16]–[18]. A principal limitation of ROI-based

methods lies in their optimization for object-based machine tasks,

where only discrete objects are considered as ROIs. ROI-optimized

compression can lead to substantial accuracy degradation in

machine tasks that require access to non-ROI regions. Pre-

processing approaches independent of ROI techniques include, e.g.,

spatial downscaling of input frames. The applied input downscaling

factor may be predetermined [11] or adaptively estimated [12].

Additionally, such approaches may incorporate a post-processing

step in which the decoded visual data is upscaled to its original

resolution prior to the machine task [12].

While encoder-side techniques are designed to reduce bitrate,

the decoder-side post-processing techniques seek to enhance the

quality of the reconstructed data for machine tasks. These post-

processing techniques predominantly concentrate on deep learning-

based quality enhancement filters [14], [15].

A key advantage of decoder-side techniques lies in their ability

to leverage learning-based methods through joint optimization with

neural network-based machine analysis tasks. Contrary, encoder-

side techniques face challenges in joint, or so-called end-to-end,

optimization due to the non-differentiable nature of conventional

codecs, such as HEVC and VVC. To overcome this challenge,

differentiable proxy networks have been proposed [19]. The

function of such proxy networks is to approximate compression

artifacts of the original codec and to provide back-propagation path

from the decoder-side to the encoder-side, thereby enabling an

approximated end-to-end optimization including both bitrate and

task accuracy. In this approach, the effectiveness of joint

optimization is highly dependent on the approximation accuracy of

the proxy network, including the approximation of both

compression-induced distortion and bitrate estimation. Another

significant challenge is the limited availability of proxy networks for

most conventional codecs. Both ROI-based methods and post-

filtering approaches are typically implemented using deep learning

models, such as convolutional neural networks (CNN), which can

introduce significant computational overhead.

Our recent luma range scaling technique [13] has shown

potential to significantly improve coding efficiency for VCM, while

maintaining low computational overhead. In this technique, the

dynamic range of a luma component is scaled down, prior to

encoding, using a constant scaling factor, and optionally fully scaled

back in an up-scaling step after decoding. While promising, this

static approach lacks adaptability to diverse video content and

encoding conditions. This current work overcomes these limitations

by proposing an adaptive luma range optimization method that

selects scaling strategies based on input analysis prior to encoding.

3 PROPOSED ADAPTIVE LUMA RANGE

OPTIMIZATION

In general, scaling down the dynamic range of the luma component

leads to a reduced bitrate; however, it tends to increase compression-

induced distortions in the reconstructed signal, which potentially

degrade machine task accuracy. One of the primary sources of these

distortions is rounding errors caused by the limited precision of the

integer-based arithmetic employed in typical codec implementations.

In contrast, luma up-scaling impacts only the reconstructed signal,

potentially amplifying existing distortions, and thereby affecting task

accuracy without altering the bitrate. Results of our prior work [13]

indicated that the optimal down-scaling factor may depend on the

characteristics and content of the input. This also applied to the up-

scaling factor, which potentially has an optimal value between no up-

scaling and full up-scaling. To address the challenge of determining

optimal scaling factors, we introduce our proposed adaptive method

in the following sections.

3.1 Proposed Coding Pipeline

Fig 1 illustrates how the proposed adaptive luma range optimization

method is incorporated into the complete coding pipeline. The

pipeline accepts an input image or video (𝑉) in the 𝑌′𝐶𝐵𝐶𝑅 color

space. The input 𝑉 is first analyzed by the input analyzer module

that seeks to yield an optimal trade-off between bitrate and machine

task accuracy by predicting the optimal combination of luma down-

scaling factor (d) and luma up-scaling factor (u) for the input, where

𝑑 ∈ (0, 1] and 𝑢 ∈ [1, 1/𝑑]. Subsequently, the luma down-scaling

module multiplies the pixel values of the luma channel in 𝑉 by d and

feeds the luma down-scaled input (𝑉𝑑) to the encoder. The encoded

bitstream is then generated by the visual encoder from 𝑉𝑑 along with

u. The value of u may be encoded into the bitstream as metadata,

e.g., by using supplemental enhancement information (SEI)

message [13].

On the receiving end, the bitstream is decoded by the visual

decoder that yields the reconstructed visual data (𝑉̂𝑑) and u. The

luma up-scaling module multiplies the luma channel of 𝑉̂𝑑 by u,

resulting in the final reconstructed image/video (𝑉̂𝑢) to be consumed

by machine vision tasks.

3.2 Proposed Training Framework

Fig. 2 illustrates the proposed training framework for the input

analyzer module. End-to-end optimization is enabled by replacing

the non-differentiable original codec with the codec proxy, which

encompasses two main components:

1) Residual injector, which utilizes a dataset comprising pre-

encoded and reconstructed versions of the training dataset,

generated using numerous combinations of down-scaling

Fig. 1. Proposed end-to-end coding pipeline, where the core component is highlighted in green.

factors 𝑑 and quantization parameter (QP) values. Each

training image in such dataset is associated with a specific 𝑑

and QP value. During the forward pass, the reconstructed

version of the input image, 𝑉̂𝑑, is retrieved from the dataset

based on the predicted 𝑑 and QP. The residual, representing

coding artifacts, is computed as the difference between 𝑉̂𝑑

and the downscaled input image 𝑉𝑑
′ . The residual is then

added to 𝑉𝑑
′ on the main forward path, resulting in 𝑉̂𝑑

′ . The 𝑉̂𝑑
′

accurately replicates the reconstructed output of the original

codec, including the distortions. The only minor difference is

the use of floating-point arithmetic during training, as

indicated by the prime symbol (′). Conclusively, the main data

path through residual injector remains compatible with back-

propagation, enabling end-to-end training.

2) Bits-per-pixel (BPP) estimator, which is a neural network

used to provide an estimate of the rate loss of the simulated

codec. By minimizing this rate loss, gradients can be

computed and backpropagated to train the input analyzer.

This estimator is pre-trained using the reconstructed dataset

described above and is fully optimized (i.e., overfitted)

specifically to that dataset to ensure accurate rate estimations.

As a result of using the BPP estimator during training, the

input analyzer is trained to minimize the estimated rate.

The two primary inputs of the training framework consist of the

training image 𝑉 and the corresponding QP value. The QP value is

the same parameter used as input by the conventional encoders to

set the baseline rate-distortion (RD) trade-off. In the training loop,

𝑉 and the QP value are initially passed into the input analyzer, which

outputs the down-scaling factor d and up-scaling factor u. At the

output of the input analyzer, the value of d is discretized, e.g., by

rounding, to align with a predefined set of discrete values

corresponding to the down-scaling factors used in generating the

reconstructed dataset within the residual injector. The luma channel

of 𝑉 is then down-scaled based on d, and the residual is added into

the resulting 𝑉𝑑
′ by the residual injector as previously described.

Subsequently, the pre-trained BPP estimator takes 𝑉̂𝑑
′ , d, and the

QP value as inputs for analysis to estimate the bpp value, which

constitutes an estimate of the rate loss R. Concurrently, the luma

channel of 𝑉̂𝑑
′ is scaled up using the predicted up-scaling factor u,

resulting in the representation of the up-scaled reconstructed image

𝑉̂𝑢
′. Next, this image is processed by the task neural network (NN)

model 𝑓, which produces the output 𝑓(𝑉̂𝑢
′). Then, the task loss D is

computed from 𝑓(𝑉̂𝑢
′) and a ground truth (GT) label using 𝑓-specific

loss function ℓ𝑓 [20]. Finally, the input analyzer is optimized using

the total loss function

ℒ = 𝑅 + 𝜆𝑄𝑃𝐷 (1)

where 𝜆𝑄𝑃 is QP-specific multiplier employed to control the RD

trade-off in the training process. The 𝜆𝑄𝑃 is a critical hyperparameter

for achieving optimal learning and loss convergence during training.

It may depend on the employed model 𝑓 and requires empirical

analysis for proper determination.

During the back-propagation step, gradients are calculated for

the model 𝑓, the BPP estimator, the scaling modules, and ultimately

for the input analyzer. However, only the parameters of the input

analyzer are optimized, while the parameters of the model 𝑓 and the

BPP estimator remain fixed.

It is noteworthy that virtually any differentiable pre-trained NN

model may be employed as the model 𝑓. Furthermore, multiple

models can be incorporated in parallel, each with their own weighted

loss functions and GT labels. The choice of models and the

corresponding loss functions ℓ𝑓 is guided by the intended use case.

For instance, task-specific training can be derived by employing

networks trained for that specific task such as object detection (OD)

or semantic segmentation [21]. Alternatively, to support more

general-purpose applications, multiple models trained for different

tasks can be employed during training. Additionally, backbone

networks [22] may be used in conjuction with feature loss, or a

specific semantic-loss model [23] can be applied.

4 EXPERIMENTAL SETUP

Our experimental procedure consisted of the following steps. First,

the BPP estimator was fully optimized—intentionally overfitted—

on the reconstructed dataset. Next, the input analyzer was trained

utilizing the described training framework. Finally, the evaluations

were conducted. All experiments were carried out utilizing the

PyTorch framework (version 2.4) along with Torchvision library

(version 0.19.0) [24]. The VVC test model (VTM) version 20.0 [25]

was employed for encoding and decoding.

4.1 Training Setup

Our training dataset was composed of 15 000 images that were

randomly selected from the OpenImages V6 dataset [26], ensuring

that none of them overlap with those in the evaluation datasets. To

Fig. 2. Overview of the training framework for the input analyzer. The main contributions are highlighted in green.

 (
)

+

construct the encoded and reconstructed dataset for the residual

injector, the selected images were encoded using different

combinations of down-scaling factors 𝑑 ∈{0.1, 0.2,…, 1.0} and

QPs ∈ {22, 27, 32, 37, 42, 47}. This process resulted in a dataset

totalling 900k images.

For the BPP estimator, pre-trained ShuffleNet V2 2X CNN

architecture [27] from PyTorch’s Torchvision library was adopted

as the backbone. A single neuron regression-head was appended to

the backbone to produce the BPP value output. The input images

were resized to 640×640 at the backbone input. The QP value and d

were each broadcasted to size of 640×640 and appended as fourth

and fifth channels to the input image. In the BPP estimator training,

the AdamW optimizer was used with an initial learning rate of

0.0001, decayed by 0.96 after each epoch. The model was trained

for 200 epochs using the reconstructed dataset described above and

subsequently evaluated on the same training data, resulting in an

average BPP prediction error of 1.68%.

To support practical and real-time use cases, a light-weight pre-

trained ShuffleNet V2 0.5X CNN architecture from Torchvision

library was selected as the backbone for the input analyzer. The

implemented regression head consisted of one hidden layer with 500

neurons, followed by a ReLU activation function and a two-neuron

output layer. The input images were resized to 512×512 at the

backbone input, and the QP-input was broadcasted to 512×512 and

appended as a fourth channel to the input image. Since the original

image resolution may influence the RD trade-off in compression, the

original image width and height were also provided as additional

input to the regression head to be factored into the prediction. During

training, the output was clamped to the range [0.1, 1.0] and rounded

to one decimal precision. During inference, the rounding was

omitted.

In order to generalize the predictions of the input analyzer across

various machine vision tasks, three distinct pre-trained NN models

were employed to generate the task loss D: RetinaNet with ResNet-

50 backbone [24], Faster R-CNN with MobileNetV3L

backbone [24], and ResNetV2-101 backbone [28]. The first two of

them are object detection models that provide task loss, while the

last one is a backbone that provides a more general feature loss.

The RGB input was converted to YUV color space before

feeding it to the luma down-scaling module, and back again to RGB

at the output of the luma up-scaling module. These conversions were

done according to the ITU-R BT.601 standard.

Training of the input analyzer was conducted for 8 epochs with

a batch size of 4. The AdamW optimizer was initialized with a

learning rate of 0.001, which decayed by 0.8 after each epoch. For

the reported results, training was conducted using only QP values of

32, 37, and 42.

4.2 Evaluation Setup

The evaluations were conducted by simulating the proposed coding

pipeline depicted in Fig. 1, in accordance with the JVET common

test conditions (CTC) for VCM [29], and utilizing the Bjontegaard

Delta Bitrate (BD-rate) [30] as the primary evaluation metric. The

proposed method was compared with our prior work [13], which

utilized fixed luma down-scaling factors 𝑑, combined with either no

up-scaling (NU) or full up-scaling (FU). The anchor results for both

evaluated methods were generated using the VTM for encoding and

decoding without any external optimization techniques.

The performance assessesment was carried out across diverse

content by focusing on three image datasets specified in the CTC:

OpenImages V6 for OD, OpenImages V6 for instance segmentation

(IS), each comprising 5000 images, and TVD-I [31], which contains

166 images and was evaluated for both OD and IS tasks. The applied

coding configuration was all intra (AI). The machine vision

architectures for above tasks are: Faster R-CNN with ResNext-101

backbone for OD and Mask R-CNN with ResNext-101 backbone for

IS [32].

The SFU-HW-objects-v1 [33] (SFU) video dataset was utilized

as a complementary assessment. The applied coding configuration

included AI, low delay (LD), and random access (RA). In this

evaluation, the input analyzer’s down-scaling prediction was

applied only to the first frame of each test sequence, and the

predicted scaling factor was then fixed for the remainder of the

sequence, while up-scaling was applied frame-by-frame basis. This

choice was made because modifying luma values for each input

frame prior to encoding could potentially deteriorate the

performance of inter prediction.

5 EXPERIMENTAL RESULTS

Table 1 reports the BD-rate results of our current and prior [13]

methods relative to the anchor. The values, expressed as

percentages, were measured at equivalent task accuracy levels. A

negative BD-rate value indicates a reduction in bitrate, i.e., coding

gain.

The results show that applying our prior method without up-

scaling (NU) generally increases bitrate for most values of d. The

best BD-rate improvement of this setup was -5.3% with d=0.9 in

OpenImages dataset for the OD task. Full up-scaling (FU) improved

the average results in all reported test cases, but the observed highest

gain remains still moderate, being -7.4% with d=0.5 on the same

dataset and task. Notably, on the TVD-I dataset with the IS task, our

prior method resulted in coding overhead in all test cases,

underscoring its limited generalization to diverse content and tasks.

In contrast, the proposed adaptive luma range optimization

demonstrates significant improvements in the BD-rate scores,

ranging from -16.6% up to -28.0%. It corresponds to an

improvement of up to nearly 5× over the prior method.

Fig. 3 presents the RD-curves of our adaptive method, the best

performing configuration of the prior method, and the anchor on the

OpenImages dataset for the OD task. The curves clearly show that

our method consistently achieves the best coding efficiency across

all data points, with particularly notable improvements in the low to

mid BPP range.

 Table 2 presents the class-wise average BD-rate results, along

with the total averages, achieved by the proposed method on the

SFU video dataset. For comparison, the table also includes the best-

performing configuration of the prior constant luma scaling method

Table 1. BD-rate (%) results for image datasets. Our method and

[13] using fixed 𝒅 combined with no (NU) or full up-scaling (FU)

Method

OpenImages

OD

OpenImages

IS

TVD-I

OD

TVD-I

IS

[13]

d NU FU NU FU NU FU NU FU

0.2 125.8 22.2 111.8 29.8 177.8 30.2 140.6 41.7

0.3 57.9 -5.6 45.8 5.1 111.3 8.6 59.9 13.3

0.4 32.8 -6.4 17.7 -2.6 60.6 2.8 65 10.8

0.5 13.1 -7.4 9.2 -4.4 36.9 1.2 56.6 8.7

0.6 8.4 -3.8 3.3 -1.9 17.3 0.9 51.3 5.8

0.7 0.8 -4.6 -1.0 -2.1 9.1 -4.1 38.3 0.9

0.8 0.7 -2.1 -4.9 -5.3 11.6 2.2 15.5 4.1

0.9 -5.3 -6.4 -2.0 1.6 1.4 -4.3 8.32 6.1

Our -28.0 -23.3 -21.1 -16.6

and its corresponding class-wise results, as reported in [13]. The

total averages are computed as a weighted average across classes to

account for the imbalance in the number of sequences per class.

This complementary test on the SFU demonstrates the input

analyzer’s ability to generalize to unseen resolutions, QPs, and

uncompressed video sources, despite being exclusively trained on

JPEG-compressed images from the OpenImages dataset, which

exhibits significantly more limited resolution diversity than SFU.

The SFU dataset comprises uncompressed videos sources with a

wide range of resolutions, spanning from 240p to 1600p. The results

demonstrate that the input analyzer maintains strong performance

on the SFU dataset, achieving substantial BD-rate gains that, almost

in all cases, surpass the result reported for the prior method. This is

particularly noteworthy given that, in this experiment, the down-

scaling factor was determined solely based on the analysis of the

first frame of each sequence. Consequently, the observed

improvements can be primarily attributed to the fully adaptive

up-scaling prediction.

These results revealed that training the input analyzer on a wide

range of QPs is not necessary to ensure its robustness across

different QPs during inference time. In the final experiments, only

three QP values (32, 37, 42) were used for training, which also

accelerated the training process by reducing the amount of training

data. Despite this limited range, the input analyzer demonstrated

strong performance across all QPs in both the OpenImages and SFU

evaluations. This is noteworthy given the high variability of QPs

present in the SFU dataset.

No architectural optimization was performed for the input

analyzer model in this work. The implemented model comprises

approximately 858k parameters, and with the input resolution of

512×512, a single inference involves around 220 million FLOPs.

While the architecture is already relatively lightweight, there

remains potential for further optimization, which is left for future

work.

6 CONCLUSION

In this paper, we proposed an adaptive luma range optimization

method for VCM. In our approach, the input is analyzed prior to

encoding to determine optimal luma down-scaling and up-scaling

parameters, aiming to achieve the best trade-off between bitrate and

machine task accuracy.

The method was implemented using deep learning techniques,

where a lightweight neural network serves as the analysis module.

To facilitate its training, we introduced a novel training framework

incorporating a codec proxy module, enabling end-to-end

optimization within a conventional non-differentiable video codec.

Evaluation results with VVC show that our adaptive method

improved BD-rate scores substantially, up to nearly 5× compared to

the improvements of the prior non-adaptive luma range scaling

approach. Relative to the anchor, it achieves bitrate reductions of up

to 28.0% on image datasets and up to 45.4% on video dataset.

Future works include exploring alternative architectures for the

input analyzer and training experiments with more diverse datasets.

REFERENCES

[1] B. Bross et al., “Overview of the versatile video coding (VVC) standard
and its applications,” IEEE Trans. Circuits Syst. Video Technol., vol.
31, no. 10, pp. 3736-3764, Oct. 2021.

[2] G. J. Sullivan, J. -R. Ohm, W. -J. Han, and T. Wiegand, “Overview of
the high efficiency video coding (HEVC) standard,” IEEE Trans.
Circuits Syst. Video Technol., vol. 22, no. 12, pp. 1649-1668, Dec. 2012

[3] H. Choi and I. V. Bajić, “Scalable image coding for humans and
machines,” IEEE Trans. Image Process, vol. 31, pp. 2739-2754, Mar.
2022.

[4] ISO/IEC JTC 1/SC 29/WG 2, “Call for Proposals for Video Coding for
Machines,” MPEG Technical Requirements output document w21546,
138th MPEG meeting, April 2022. [Online] Available:
https://www.mpeg.org/structure/technical-requirements.

[5] S. Liu, J. Chen, and J. Ström (ed.) “Optimization of encoders and
receiving systems for machine analysis of coded video content (draft 8,
for future updates),” document JVET-AK2030-v3, Geneva, CH, Jan.
2025. [Online] Available: https://www.jvet-experts.org/
doc_end_user/documents/37_Geneva/wg11/JVET-AK2030-v3.zip.

[6] L. Duan, J. Liu, W. Yang, T. Huang, and W. Gao, “Video coding for
machines: a paradigm of collaborative compression and intelligent
analytics,” IEEE Trans. Image Process., vol. 29, pp. 8680-8695, Aug.
2020.

[7] S. Różek, O. Stankiewicz, S. Maćkowiak, and M. Domański, “Video
coding for machines using object analysis and standard video codecs,”
in Proc. Int. Conf. on Vis. Commun. and Image Process., Jeju, Republic
of Korea, Dec. 2023.

[8] A. Zahra, M. Ghafoor, K. Munir, A. Ullah, and Z. Ul Abideen,
“Application of region-based video surveillance in smart cities using
deep learning,” Multimed Tools Appl, vol. 83, no. 5, pp. 15313-15338,
Dec. 2021.

[9] A. D. Bagdanov, M. Bertini, A. Del Bimbo, and L. Seidenari,
“Adaptive video compression for video surveillance applications,” in
Proc. IEEE Int. Symp. Multimedia, Dana Point, CA, USA, 2011, pp.
190-197.

[10] A. Aliouat, N. Kouadria, M. Maimour, and S. Harize, “An efficient low
complexity region-of-interest detection for video coding in wireless
visual surveillance,” in Proc. Int. Multi-Conf. Syst., Signals & Devices,
Setif, Algeria, May 2022, pp. 1357-1362.

Fig. 3. RD-curves of the proposed method, the prior method [13],

and the anchor on the OpenImages dataset for the OD task.

Table 2. BD-rate (%) results for the proposed method on SFU

video dataset under AI, LD, and RA configurations

SFU

OD
Our method Best average from [13]

 AI LD RA AI LD RA

ClassA -31.1 -45.4 +15.0 -15.6 -34.0 +5.2

ClassB -12.2 -17.7 -17.7 -4.5 -13.8 -13.5

ClassC -9.3 -14.3 -9.9 -5.4 -13.8 -6.5

ClassD -7.9 -11.6 -16.9 -6.6 -12.8 -10.6

Average -11.4 -16.9 -12.5 -6.3 -15.0 -9.0

[11] A. Marie, K. Desnos, L. Morin, and L. Zhang, “Video coding for
machines: large-scale evaluation of deep neural networks robustness to
compression artifacts for semantic segmentation,” in Proc. IEEE Int.
Workshop Multimedia Signal Process., Shanghai, China, Sep. 2022.

[12] H. Choi, S. Jeong, S. Kwak, S. -H. Jung, and J. H. Ko, “Adaptive image
downscaling for rate-accuracy-latency optimization of task-target
image compression,” in Proc. Int. Conf. AI Circuits and Syst., Abu
Dhabi, United Arab Emirates, Apr. 2024.

[13] T. Partanen et al., “Luma range scaling for enhanced VVC efficiency
in video coding for machines,” in Proc. IEEE Int. Workshop
Multimedia Signal Process., West Lafayette, IN, USA, Oct. 2024.

[14] J. Liu, D. Liu, W. Yang, S. Xia, X. Zhang, and Y. Dai, “A
comprehensive benchmark for single image compression artifact
reduction,” in IEEE Trans. Image Process., vol. 29, pp. 7845-7860,
July 2020.

[15] J. I. Ahonen, R. G. Youvalari, N. Le, H. Zhang, F. Cricri, and H. R.
Tavakoli, “Learned Enhancement Filters for Image Coding for
Machines,“ in Proc. IEEE Int. Symp. Multimedia, Naple, Italy, pp. 235-
239, Nov. 2021.

[16] H. Choi and I. V. Bajic, “High efficiency compression for object
detection,” in Proc. IEEE Int. Conf. Acoustics, Speech Signal Process.,
Calgary, Canada, Apr. 2018, pp. 1792-1796.

[17] Q. Cai, Z. Chen, D. O. Wu, S. Liu, and X. Li, “A novel video coding
strategy in HEVC for object detection,” IEEE Trans. Circuits Syst.
Video Technol., vol. 31, no. 12, pp. 4924-4937, Dec. 2021.

[18] K. Fischer, F. Fleckenstein, C. Herglotz, and A. Kaup, “Saliency-
driven versatile video coding for neural object detection,” in Proc.
IEEE Int. Conf. Acoustics, Speech Signal Process., Toronto, Canada,
Jun. 2021, pp. 1505–1509.

[19] G. Lu, X. Ge, T. Zhong, Q. Hu, and J. Geng, “Preprocessing enhanced
image compression for machine vision,” in IEEE Trans. Circuits Syst.
Video Technol., vol. 34, no. 12, pp. 13556-13568, Dec. 2024

[20] J. Terven, D.-M. Cordova-Esparza, J.-A. Romero-González, A.
Ramírez-Pedraza, and E. A. Chávez-Urbiola, “A comprehensive
survey of loss functions and metrics in deep learning,” Artif. Intell.
Rev., vol. 58, no. 195, Apr. 2025.

[21] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional
Networks for Biomedical Image Segmentation.” 2015 [Online].
Available: https://arxiv.org/abs/1505.04597

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in IEEE Conf. Comput. Vision Pattern Recognit., Las
Vegas, NV, USA, pp. 770-778, June 2016.

[23] C. Gao, D. Liu, L. Li, and F. Wu, “Towards task-generic image
compression: a study of semantics-oriented metrics,” in IEEE Trans.
Multimedia, vol. 25, pp. 721-735, 2023.

[24] A. Paszke et al., “Pytorch: an imperative style high-performance deep
learning library,” in Proc. Int. Conf. Neural Inf. Process. Syst.,
Vancouver, Canada, Dec. 2019, pp 8024–8035.

[25] “VVC Reference Software Version 20.0,” Accessed: May. 2025.
[Online]. Available: https://vcgit.hhi.fraunhofer.de/jvet/
VVCSoftware_VTM/-/tree/VTM-20.0.

[26] A.Kuznetsova et al., “The open images dataset v4: Unified image
classification, object detection, and visual relationship detection at
scale,”, Int. J. Comput. Vis., vol. 128, pp. 1956-1981, Mar. 2020.

[27] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “ShuffleNet V2: Practical
guidelines for efficient CNN architecture design,” in Proc. Eur. Conf.
Comput. Vis., vol. 11218, V. Ferrari, M. Hebert, C. Sminchisescu, and
Y. Weiss, Eds. Cham, Switzerland : Springer, pp. 122-138, 2018.

[28] Ross Wightman, ”PyTorch Image Models,” 2019. Accessed: May
2025. [Online]. Available: https://github.com/rwightman/pytorch-
image-models.

[29] S. Liu and C. Hollman, “Common test conditions for optimization of
encoders and receiving systems for machine analysis of coded video
content,” document JVET-AI2031-v1, Sapporo, Japan, Jul. 2024.

[30] G. Bjøntegaard, “Improvements of the BD-PSNR model,” document
VCEG-AI11, Berlin, Germany, Jul. 2008.

[31] W. Gao, X. Xu, M. Qin, and S. Liu, “An open dataset for video coding
for machines standardization,” in Proc. IEEE Int. Conf. Image
Process., Bordeaux, France, Oct. 2022, pp. 4008-4012.

[32] Y. Wu, A. Kirillov, F. Masa, W.-Y. Lo, and R. Girschick,
“Detectron2,” 2019. Accessed: May 2025. [Online]. Available:
https://github.com/facebookresearch/detectron2.

[33] H. Choi, E. Hosseini, S. Ranjbar Alvar, R. A. Cohen, and I. V. Bajić,
“A dataset of labelled objects on raw video sequences,” Data in Brief,
vol. 34, 2021.

