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ABSTRACT 

The growing prevalence of machine-driven visual data consumption 

underscores the need to meet the unique requirements of Video 

Coding for Machines (VCM). In this paper, we propose to enhance 

the coding efficiency of Versatile Video Coding (VVC) for machine 

consumption by adaptively adjusting the dynamic range of the input 

luma channel prior to encoding. The visual input is characterized 

using the introduced input analyzer that predicts the optimal 

dynamic range and provides the corresponding 1) luma down-

scaling factors applied before encoding and 2) luma up-scaling 

factors used after decoding to restore the dynamic range. Our input 

analyzer is implemented as a lightweight neural network. For the 

network training, we introduce a training framework incorporating 

a codec proxy module that enables end-to-end optimization by 

simulating a conventional non-differentiable video codec. The 

proposed method has been evaluated as part of the conventional 

VVC pipeline, where VVC test model (VTM) is used for encoding 

and decoding. Our experimental results show that integrating the 

proposed solution into the pipeline improves coding efficiency by 

up to 28.0% on image datasets and up to 45.4% on video dataset for 

object detection tasks. 

Index Terms—Video Coding for Machines (VCM), Machine 

Vision, Neural Networks (NN), Versatile Video Coding (VVC) 

1 INTRODUCTION 

Machine vision-based visual data analysis has become an integral 

part of numerous applications, including smart mobility and 

transportation, security and surveillance, healthcare diagnostics, and 

industrial automation. These applications critically rely on the 

quality and integrity of the visual data they use, necessitating 

efficient compression schemes that preserve machine task accuracy 

within the limits of available bandwidth and storage space. The 

Versatile Video Coding (VVC) standard [1] represents the cutting 

edge of visual data compression, approximately doubling the coding 

efficiency of its predecessor, High Efficiency Video 

Coding (HEVC) [2]. However, these conventional video coding 

standards are primarily optimized for human visual perception, so 

they tend to yield bitrate overhead in machine vision 

applications [3]. To that end, there is an urgent need to adapt modern 

visual coding schemes for machine consumption.  

Recent standardization activities by the Moving Picture Experts 

Group (MPEG) [4] and Joint Video Experts Team (JVET) [5] seek 

to address the emerging field of machine-oriented image and video 

coding. This domain is typically referred to as video coding for 

machines (VCM) [6]. The fundamental objective of VCM is to 

develop image and video coding tools that are specifically optimized 

for machine-based analysis or hybrid machine-human consumption. 

Existing solutions implemented within conventional video 

coding schemes, such as VVC, typically involve pre-processing, 

encoding optimization, and post-processing techniques [5]. The 

techniques for pre-processing and encoding optimization are 

predominantly built on region of interest (ROI)-based 

methods [7]–[10]. Alternatively, pre-processing may include spatial 

downsampling [11], [12] or dynamic range scaling of pixel 

intensities [13], wherein the dynamic luma range is downscaled by 

multiplying all luma values by a predetermined factor. In contrast, 

post-processing techniques mainly include various compression 

artifact suppression filters [14], [15], which are tailored to improve 

signal fidelity for machine analysis tasks.  

In this work, we propose an adaptive luma range optimization 

method for VCM. It incorporates an input analyzer module that 

analyzes the given input prior to encoding and predicts optimal luma 

down-scaling and up-scaling factors. Our previous approach [13] 

applied a predetermined and constant luma scaling factor across all 

content, whereas the proposed method dynamically adapts to the 

visual characteristics of the given input data. This work also 

introduces a novel training framework for the input analyzer. The 

framework incorporates a codec proxy to enable end-to-end 

optimization by simulating a conventional, non-differentiable video 

coding pipeline.  

The remainder of this paper is organized as follows. Section 2 

provides an overview of related pre-processing and post-processing 

techniques for VCM. Section 3 describes the proposed coding 

pipeline, particularly focusing on the designed input analyzer 

module and the novel training framework introduced for it. The 

experimental setup is presented in Section 4 and experimental 

results in Section 5. The conclusions are given in Section 6. 

2 RELATED WORKS 

Pre-processing and encoding optimization techniques developed for 

VCM primarily aim at bitrate reduction. They are typically 

implemented through ROI methods that initially analyze input data 

to identify regions considered salient for downstream machine 

tasks [5], [7]. The existing ROI-based pre-processing methods 

achieve coding gains by either blurring [9] or completely 

… 

  

 

This work was supported by the Research Council of Finland (decision 

no.  349216). 



 

suppressing [10]  (non-ROI) background regions. The encoding 

optimization techniques, on the other hand, use saliency information 

to guide the encoder to allocate more bits to ROI regions than to 

non-ROI regions [8], [16]–[18]. A principal limitation of ROI-based 

methods lies in their optimization for object-based machine tasks, 

where only discrete objects are considered as ROIs. ROI-optimized 

compression can lead to substantial accuracy degradation in 

machine tasks that require access to non-ROI regions. Pre-

processing approaches independent of ROI techniques include, e.g., 

spatial downscaling of input frames. The applied input downscaling 

factor may be predetermined [11] or adaptively estimated [12]. 

Additionally, such approaches may incorporate a post-processing 

step in which the decoded visual data is upscaled to its original 

resolution prior to the machine task [12].  

While encoder-side techniques are designed to reduce bitrate, 

the decoder-side post-processing techniques seek to enhance the 

quality of the reconstructed data for machine tasks. These post-

processing techniques predominantly concentrate on deep learning-

based quality enhancement filters [14], [15].  

A key advantage of decoder-side techniques lies in their ability 

to leverage learning-based methods through joint optimization with 

neural network-based machine analysis tasks. Contrary, encoder-

side techniques face challenges in joint, or so-called end-to-end, 

optimization due to the non-differentiable nature of conventional 

codecs, such as HEVC and VVC. To overcome this challenge, 

differentiable proxy networks have been proposed [19]. The 

function of such proxy networks is to approximate compression 

artifacts of the original codec and to provide back-propagation path 

from the decoder-side to the encoder-side, thereby enabling an 

approximated end-to-end optimization including both bitrate and 

task accuracy. In this approach, the effectiveness of joint 

optimization is highly dependent on the approximation accuracy of 

the proxy network, including the approximation of both 

compression-induced distortion and bitrate estimation. Another 

significant challenge is the limited availability of proxy networks for 

most conventional codecs. Both ROI-based methods and post-

filtering approaches are typically implemented using deep learning 

models, such as convolutional neural networks (CNN), which can 

introduce significant computational overhead.  

Our recent luma range scaling technique [13] has shown 

potential to significantly improve coding efficiency for VCM, while 

maintaining low computational overhead. In this technique, the 

dynamic range of a luma component is scaled down, prior to 

encoding, using a constant scaling factor, and optionally fully scaled 

back in an up-scaling step after decoding. While promising, this 

static approach lacks adaptability to diverse video content and 

encoding conditions. This current work overcomes these limitations 

by proposing an adaptive luma range optimization method that 

selects scaling strategies based on input analysis prior to encoding. 

3 PROPOSED ADAPTIVE LUMA RANGE 

OPTIMIZATION 

In general, scaling down the dynamic range of the luma component 

leads to a reduced bitrate; however, it tends to increase compression-

induced distortions in the reconstructed signal, which potentially 

degrade machine task accuracy. One of the primary sources of these 

distortions is rounding errors caused by the limited precision of the 

integer-based arithmetic employed in typical codec implementations. 

In contrast, luma up-scaling impacts only the reconstructed signal, 

potentially amplifying existing distortions, and thereby affecting task 

accuracy without altering the bitrate. Results of our prior work [13] 

indicated that the optimal down-scaling factor may depend on the 

characteristics and content of the input. This also applied to the up-

scaling factor, which potentially has an optimal value between no up-

scaling and full up-scaling. To address the challenge of determining 

optimal scaling factors, we introduce our proposed adaptive method 

in the following sections. 

3.1 Proposed Coding Pipeline 

Fig 1 illustrates how the proposed adaptive luma range optimization 

method is incorporated into the complete coding pipeline. The 

pipeline accepts an input image or video (𝑉) in the 𝑌′𝐶𝐵𝐶𝑅 color 

space. The input 𝑉 is first analyzed by the input analyzer module 

that seeks to yield an optimal trade-off between bitrate and machine 

task accuracy by predicting the optimal combination of luma down-

scaling factor (d) and luma up-scaling factor (u) for the input, where 

𝑑 ∈  (0, 1] and 𝑢 ∈ [1, 1/𝑑]. Subsequently, the luma down-scaling 

module multiplies the pixel values of the luma channel in 𝑉 by d and 

feeds the luma down-scaled input (𝑉𝑑) to the encoder. The encoded 

bitstream is then generated by the visual encoder from 𝑉𝑑 along with 

u. The value of u may be encoded into the bitstream as metadata, 

e.g., by using supplemental enhancement information (SEI) 

message [13]. 

On the receiving end, the bitstream is decoded by the visual 

decoder that yields the reconstructed visual data (𝑉̂𝑑) and u. The 

luma up-scaling module multiplies the luma channel of 𝑉̂𝑑 by u, 

resulting in the final reconstructed image/video (𝑉̂𝑢) to be consumed 

by machine vision tasks.  

3.2 Proposed Training Framework 

Fig. 2 illustrates the proposed training framework for the input 

analyzer module. End-to-end optimization is enabled by replacing 

the non-differentiable original codec with the codec proxy, which 

encompasses two main components:  

1) Residual injector, which utilizes a dataset comprising pre-

encoded and reconstructed versions of the training dataset, 

generated using numerous combinations of down-scaling 

 

Fig. 1. Proposed end-to-end coding pipeline, where the core component is highlighted in green. 

 

    
            

    
          

              

 

   
        
           

      
       

      
       

         
  

  

  



 

factors 𝑑 and quantization parameter (QP) values. Each 

training image in such dataset is associated with a specific 𝑑  

and QP value. During the forward pass, the reconstructed 

version of the input image, 𝑉̂𝑑, is retrieved from the dataset 

based on the predicted 𝑑 and QP. The residual, representing 

coding artifacts, is computed as the difference between  𝑉̂𝑑 

and the downscaled input image 𝑉𝑑
′ . The residual is then 

added to 𝑉𝑑
′  on the main forward path, resulting in 𝑉̂𝑑

′ . The 𝑉̂𝑑
′ 

accurately replicates the reconstructed output of the original 

codec, including the distortions. The only minor difference is 

the use of floating-point arithmetic during training, as 

indicated by the prime symbol (′). Conclusively, the main data 

path through residual injector remains compatible with back-

propagation, enabling end-to-end training.  

2) Bits-per-pixel (BPP) estimator, which is a neural network 

used to provide an estimate of the rate loss of the simulated 

codec. By minimizing this rate loss, gradients can be 

computed and backpropagated to train the input analyzer. 

This estimator is pre-trained using the reconstructed dataset 

described above and is fully optimized (i.e., overfitted) 

specifically to that dataset to ensure accurate rate estimations. 

As a result of using the BPP estimator during training, the 

input analyzer is trained to minimize the estimated rate. 

The two primary inputs of the training framework consist of the 

training image 𝑉 and the corresponding QP value. The QP value is 

the same parameter used as input by the conventional encoders to 

set the baseline rate-distortion (RD) trade-off. In the training loop, 

𝑉 and the QP value are initially passed into the input analyzer, which 

outputs the down-scaling factor d and up-scaling factor u. At the 

output of the input analyzer, the value of d is discretized, e.g., by 

rounding, to align with a predefined set of discrete values 

corresponding to the down-scaling factors used in generating the 

reconstructed dataset within the residual injector. The luma channel 

of 𝑉 is then down-scaled based on d, and the residual is added into 

the resulting 𝑉𝑑
′  by the residual injector as previously described.  

Subsequently, the pre-trained BPP estimator takes 𝑉̂𝑑
′ , d, and the 

QP value as inputs for analysis to estimate the bpp value, which 

constitutes an estimate of the rate loss R. Concurrently, the luma 

channel of 𝑉̂𝑑
′  is scaled up using the predicted up-scaling factor u, 

resulting in the representation of the up-scaled reconstructed image 

𝑉̂𝑢
′. Next, this image is processed by the task neural network (NN) 

model 𝑓, which produces the output 𝑓(𝑉̂𝑢
′). Then, the task loss D is 

computed from 𝑓(𝑉̂𝑢
′) and a ground truth (GT) label using 𝑓-specific 

loss function ℓ𝑓 [20]. Finally, the input analyzer is optimized using 

the total loss function 

ℒ = 𝑅 + 𝜆𝑄𝑃𝐷 (1) 

where 𝜆𝑄𝑃 is QP-specific multiplier employed to control the RD 

trade-off in the training process. The 𝜆𝑄𝑃 is a critical hyperparameter 

for achieving optimal learning and loss convergence during training. 

It may depend on the employed model 𝑓 and requires empirical 

analysis for proper determination. 

During the back-propagation step, gradients are calculated for 

the model 𝑓, the BPP estimator, the scaling modules, and ultimately 

for the input analyzer. However, only the parameters of the input 

analyzer are optimized, while the parameters of the model 𝑓 and the 

BPP estimator remain fixed. 

It is noteworthy that virtually any differentiable pre-trained NN 

model may be employed as the model 𝑓. Furthermore, multiple 

models can be incorporated in parallel, each with their own weighted 

loss functions and GT labels. The choice of models and the 

corresponding loss functions ℓ𝑓 is guided by the intended use case. 

For instance, task-specific training can be derived by employing 

networks trained for that specific task such as object detection (OD) 

or semantic segmentation [21]. Alternatively, to support more 

general-purpose applications, multiple models trained for different 

tasks can be employed during training. Additionally, backbone 

networks [22] may be used in conjuction with feature loss, or a 

specific semantic-loss model [23] can be applied. 

4 EXPERIMENTAL SETUP 

Our experimental procedure consisted of the following steps. First, 

the BPP estimator was fully optimized—intentionally overfitted—

on the reconstructed dataset. Next, the input analyzer was trained 

utilizing the described training framework. Finally, the evaluations 

were conducted. All experiments were carried out utilizing the 

PyTorch framework (version 2.4) along with Torchvision library 

(version 0.19.0) [24]. The VVC test model (VTM) version 20.0 [25] 

was employed for encoding and decoding. 

4.1 Training Setup 

Our training dataset was composed of 15 000 images that were 

randomly selected from the OpenImages V6 dataset [26], ensuring 

that none of them overlap with those in the evaluation datasets. To 

 

Fig. 2. Overview of the training framework for the input analyzer. The main contributions are highlighted in green. 
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construct the encoded and reconstructed dataset for the residual 

injector, the selected images were encoded using different 

combinations of down-scaling factors 𝑑 ∈{0.1, 0.2,…, 1.0} and 

QPs ∈ {22, 27, 32, 37, 42, 47}. This process resulted in a dataset 

totalling 900k images.  

For the BPP estimator, pre-trained ShuffleNet V2 2X CNN 

architecture [27] from PyTorch’s Torchvision library was adopted 

as the backbone. A single neuron regression-head was appended to 

the backbone to produce the BPP value output. The input images 

were resized to 640×640 at the backbone input. The QP value and d 

were each broadcasted to size of 640×640 and appended as fourth 

and fifth channels to the input image. In the BPP estimator training, 

the AdamW optimizer was used with an initial learning rate of 

0.0001, decayed by 0.96 after each epoch. The model was trained 

for 200 epochs using the reconstructed dataset described above and 

subsequently evaluated on the same training data, resulting in an 

average BPP prediction error of 1.68%. 

To support practical and real-time use cases, a light-weight pre-

trained ShuffleNet V2 0.5X CNN architecture from Torchvision 

library was selected as the backbone for the input analyzer. The 

implemented regression head consisted of one hidden layer with 500 

neurons, followed by a ReLU activation function and a two-neuron 

output layer. The input images were resized to 512×512 at the 

backbone input, and the QP-input was broadcasted to 512×512 and 

appended as a fourth channel to the input image. Since the original 

image resolution may influence the RD trade-off in compression, the 

original image width and height were also provided as additional 

input to the regression head to be factored into the prediction. During 

training, the output was clamped to the range [0.1, 1.0] and rounded 

to one decimal precision. During inference, the rounding was 

omitted. 

In order to generalize the predictions of the input analyzer across 

various machine vision tasks, three distinct pre-trained NN models 

were employed to generate the task loss D: RetinaNet with ResNet-

50 backbone [24], Faster R-CNN with MobileNetV3L 

backbone [24], and ResNetV2-101 backbone [28]. The first two of 

them are object detection models that provide task loss, while the 

last one is a backbone that provides a more general feature loss.  

The RGB input was converted to YUV color space before 

feeding it to the luma down-scaling module, and back again to RGB 

at the output of the luma up-scaling module. These conversions were 

done according to the ITU-R BT.601 standard.  

Training of the input analyzer was conducted for 8 epochs with 

a batch size of 4. The AdamW optimizer was initialized with a 

learning rate of 0.001, which decayed by 0.8 after each epoch. For 

the reported results, training was conducted using only QP values of 

32, 37, and 42. 

4.2 Evaluation Setup 

The evaluations were conducted by simulating the proposed coding 

pipeline depicted in Fig. 1, in accordance with the JVET common 

test conditions (CTC) for VCM [29], and utilizing the Bjontegaard 

Delta Bitrate (BD-rate) [30] as the primary evaluation metric. The 

proposed method was compared with our prior work [13], which 

utilized fixed luma down-scaling factors 𝑑, combined with either no 

up-scaling (NU) or full up-scaling (FU). The anchor results for both 

evaluated methods were generated using the VTM for encoding and 

decoding without any external optimization techniques.   

The performance assessesment was carried out across diverse 

content by focusing on three image datasets specified in the CTC: 

OpenImages V6 for OD, OpenImages V6 for instance segmentation 

(IS), each comprising 5000 images, and TVD-I [31], which contains 

166 images and was evaluated for both OD and IS tasks. The applied 

coding configuration was all intra (AI). The machine vision 

architectures for above tasks are: Faster R-CNN with ResNext-101 

backbone for OD and Mask R-CNN with ResNext-101 backbone for 

IS [32].   

The SFU-HW-objects-v1 [33] (SFU) video dataset was utilized 

as a complementary assessment. The applied coding configuration 

included AI, low delay (LD), and random access (RA). In this 

evaluation, the input analyzer’s down-scaling prediction was 

applied only to the first frame of each test sequence, and the 

predicted scaling factor was then fixed for the remainder of the 

sequence, while up-scaling was applied frame-by-frame basis. This 

choice was made because modifying luma values for each input 

frame prior to encoding could potentially deteriorate the 

performance of inter prediction.  

5 EXPERIMENTAL RESULTS 

Table 1 reports the BD-rate results of our current and prior [13] 

methods relative to the anchor. The values, expressed as 

percentages, were measured at equivalent task accuracy levels. A 

negative BD-rate value indicates a reduction in bitrate, i.e., coding 

gain. 

The results show that applying our prior method without up-

scaling (NU) generally increases bitrate for most values of d. The 

best BD-rate improvement of this setup was -5.3% with d=0.9 in 

OpenImages dataset for the OD task. Full up-scaling (FU) improved 

the average results in all reported test cases, but the observed highest 

gain remains still moderate, being -7.4% with d=0.5 on the same 

dataset and task. Notably, on the TVD-I dataset with the IS task, our 

prior method resulted in coding overhead in all test cases, 

underscoring its limited generalization to diverse content and tasks. 

In contrast, the proposed adaptive luma range optimization 

demonstrates significant improvements in the BD-rate scores, 

ranging from -16.6% up to -28.0%. It corresponds to an 

improvement of up to nearly 5× over the prior method.  

Fig. 3 presents the RD-curves of our adaptive method, the best 

performing configuration of the prior method, and the anchor on the 

OpenImages dataset for the OD task. The curves clearly show that 

our method consistently achieves the best coding efficiency across 

all data points, with particularly notable improvements in the low to 

mid BPP range. 

 Table 2 presents the class-wise average BD-rate results, along 

with the total averages, achieved by the proposed method on the 

SFU video dataset. For comparison, the table also includes the best-

performing configuration of the prior constant luma scaling method 

Table 1. BD-rate (%) results for image datasets. Our method and 

[13] using fixed 𝒅 combined with no (NU) or full up-scaling (FU) 

Method 

OpenImages 

OD 

OpenImages 

IS 

TVD-I 

OD 

TVD-I 

IS 

[13] 

d NU FU NU FU NU FU NU FU 

0.2 125.8 22.2 111.8 29.8 177.8 30.2 140.6 41.7 

0.3 57.9 -5.6 45.8 5.1 111.3 8.6 59.9 13.3 

0.4 32.8 -6.4 17.7 -2.6 60.6 2.8 65 10.8 

0.5 13.1 -7.4 9.2 -4.4 36.9 1.2 56.6 8.7 

0.6 8.4 -3.8 3.3 -1.9 17.3 0.9 51.3 5.8 

0.7 0.8 -4.6 -1.0 -2.1 9.1 -4.1 38.3 0.9 

0.8 0.7 -2.1 -4.9 -5.3 11.6 2.2 15.5 4.1 

0.9 -5.3 -6.4 -2.0 1.6 1.4 -4.3 8.32 6.1 

Our -28.0 -23.3 -21.1 -16.6 

 



 

and its corresponding class-wise results, as reported in [13]. The 

total averages are computed as a weighted average across classes to 

account for the imbalance in the number of sequences per class.  

This complementary test on the SFU demonstrates the input 

analyzer’s ability to generalize to unseen resolutions, QPs, and 

uncompressed video sources, despite being exclusively trained on 

JPEG-compressed images from the OpenImages dataset, which 

exhibits significantly more limited resolution diversity than SFU. 

The SFU dataset comprises uncompressed videos sources with a 

wide range of resolutions, spanning from 240p to 1600p. The results 

demonstrate that the input analyzer maintains strong performance 

on the SFU dataset, achieving substantial BD-rate gains that, almost 

in all cases, surpass the result reported for the prior method. This is 

particularly noteworthy given that, in this experiment, the down-

scaling factor was determined solely based on the analysis of the 

first frame of each sequence. Consequently, the observed 

improvements can be primarily attributed to the fully adaptive 

up-scaling prediction. 

These results revealed that training the input analyzer on a wide 

range of QPs is not necessary to ensure its robustness across 

different QPs during inference time. In the final experiments, only 

three QP values (32, 37, 42) were used for training, which also 

accelerated the training process by reducing the amount of training 

data. Despite this limited range, the input analyzer demonstrated 

strong performance across all QPs in both the OpenImages and SFU 

evaluations. This is noteworthy given the high variability of QPs 

present in the SFU dataset. 

No architectural optimization was performed for the input 

analyzer model in this work. The implemented model comprises 

approximately 858k parameters, and with the input resolution of 

512×512, a single inference involves around 220 million FLOPs. 

While the architecture is already relatively lightweight, there 

remains potential for further optimization, which is left for future 

work. 

6 CONCLUSION 

In this paper, we proposed an adaptive luma range optimization 

method for VCM. In our approach, the input is analyzed prior to 

encoding to determine optimal luma down-scaling and up-scaling 

parameters, aiming to achieve the best trade-off between bitrate and 

machine task accuracy.  

The method was implemented using deep learning techniques, 

where a lightweight neural network serves as the analysis module. 

To facilitate its training, we introduced a novel training framework 

incorporating a codec proxy module, enabling end-to-end 

optimization within a conventional non-differentiable video codec. 

Evaluation results with VVC show that our adaptive method 

improved BD-rate scores substantially, up to nearly 5× compared to 

the improvements of the prior non-adaptive luma range scaling 

approach. Relative to the anchor, it achieves bitrate reductions of up 

to 28.0% on image datasets and up to 45.4% on video dataset. 

Future works include exploring alternative architectures for the 

input analyzer and training experiments with more diverse datasets. 
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Fig. 3. RD-curves of the proposed method, the prior method [13], 
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