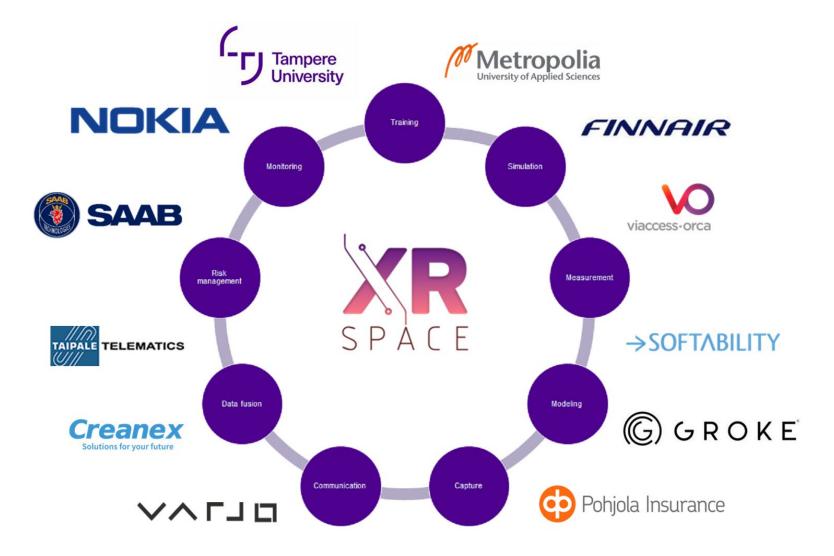


XR Simulation and Presence at the Cloud Edge

Nokia Veturi LEAD event 30.10.2025. Espoo

Main idea

To develop and utilize multi-dimensional analytics and risk management of vehicles operating in professional environments - such as heavy, air, and maritime transport - including both simulated and real operating environments.



Project information

- A co-innovation project funded by Business Finland under the Nokia Veturi 2.0 program
- **O** 2022-2025
- Budget ~10 M€
- Coordinator: Tampere University
- Main idea:
 - Developing and utilizing multi-dimensional analytics and risk management of vehicles operating in professional environments such as heavy, air, and maritime transport including both simulated and real operating environments.
- Two focus areas:
 - FA1: Intelligent Simulation and Performance monitoring for Innovative Risk management in operator Ecosystems and Driving, INSPIRED
 - FA2: Volumetric Media Communication

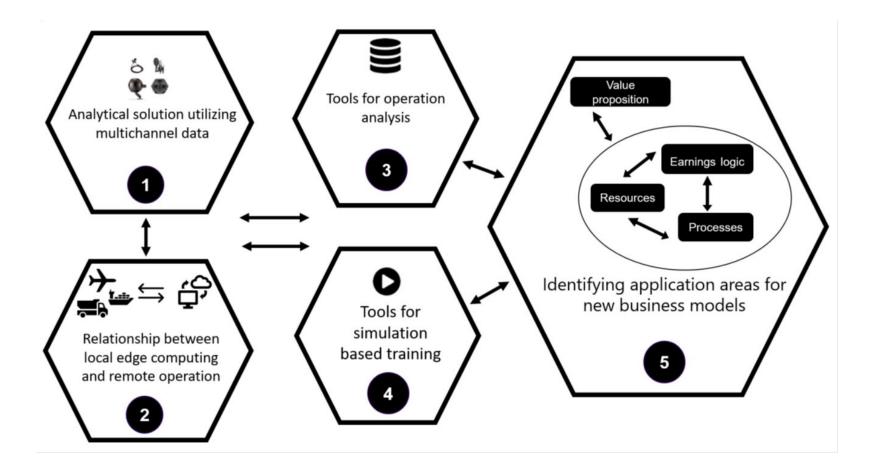
XR-SPACE Consortium

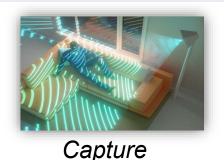
Focus Area 1: INSPIRE

Intelligent Simulation and Performance Monitoring for Innovative Risk Management in Operator Ecosystems and Driving

Research topics

- Multichannel data collection and analytics, data fusion
- Data visualization
- Real-time data processing and edge computing
- Scalable and adaptive training simulations
- Cognitive load of (remote)operator and adaptive feedback
- Preventive risk-management and business models that facilitate behavioral change (safety)
- Case studies with companies & FIMA





Project scope, FA1

- Real-time data processing with edge computing techniques enables the most efficient solutions for training and (remote) operations
- Thus training and operations can be guided in real-time and even predictively utilizing timely feedback

Focus Area 2: Volumetric Media Communication

Transmission

Rendering

Technical areas of interest:

- Real-time volumetric 3D capture with RGB-D cameras
- Real-time point cloud generation for 3D representation
- Dedicated media format generation for volumetric data
- Real-time video-based point cloud compression (V-PCC)
- Real-time HEVC/VVC coding methods for volumetric data
- Real-time viewport-dependent HEVC/VVC encoding

Join us to hear project details and experience demos on **November 6, 2025** (Nokia Arena, Tampere)!

Thank you!

We are happy to answer questions, please get in touch:

Professor Markku Turunen, <u>markku.turunen@tuni.fi</u>

