Correlated Electrons in Optically Tunable Quantum Dots: Building an Electron Dimer Molecule
15 June 2010
We observe the low-lying excitations of a molecular dimer formed by two electrons in a GaAs semiconductor quantum dot in which the number of confined electrons is tuned by optical illumination. By employing inelastic light scattering we identify the intershell excitations in the one-electron regime and the distinct spin and charge modes in the interacting few-body configuration. In the case of two electrons, a comparison with configuration-interaction calculations allows us to link the observed excitations with the breathing mode of the molecular dimer and to determine the singlet-triplet energy splitting.