De Finetti representation theorem for quantum-process tomography

01 June 2004

New Image

In quantum-process tomography it is possible to express the experimenter's prior information as a sequence of quantum operations, i.e., trace-preserving completely positive maps. In analogy to de Finetti's concept of exchangeability for probability distributions, we give a definition of exchangeability for sequences of quantum operations. We then state and prove a representation theorem for such exchangeable sequences. The theorem leads to a simple characterization of admissible priors for quantum process tomography and solves to a Bayesian's satisfaction the problem of an unknown quantum operation.