Density Decompositions of Networks

05 March 2018

New Image

We introduce a new topological descriptor of a network called the density decomposition which is a partition of the nodes of a network into regions of uniform density. The decomposition we define is unique in the sense that a given network has exactly one density decomposition. The number of nodes in each partition defines a density distribution which we find is measurably similar to the degree distribution of given real networks (social, internet, etc.) and measurably dissimilar in synthetic networks (preferential attachment, small world, etc.). We also show how to build networks having given density distributions, which gives us further insight into the structure of real networks.