Effects of Electrical Leakage Currents on MEMS Reliability and Performance

01 June 2004

New Image

In this paper we discuss the reliability and performance implications of leakage currents in the bulk and on the surface of the dielectric insulating the drive (or sense) electrodes from one another. Anodic oxidation of poly-silicon electrodes can occur very rapidly in samples that are not hermetically packaged. The accelerating factors are presented along with an efficient early warning scheme. The relationship between leakage currents and the accumulation of quasi-static charge in dielectrics are discussed, along with several techniques to mitigate charging and the associated drift in electrostatically actuated or sensed MEMS devices. Two key parameters are shown to be the electrode geometry and the conductivity of the dielectric. Electrical breakdown in submicron gaps is presented as a function of packaging gas and electrode spacing. We discuss the trade-offs involved in choosing gap geometrics and dielectric properties that balance performance and reliability.