Explicit routing algorithms for Internet traffic engineering
01 January 1999
This paper considers explicit routing algorithms for Internet traffic engineering. Explicit routing is seen to be a much more capable solution for improving network utilization than the current destination-based routing and the multi-protocol label switching (MPLS) standard has made explicit routes implementable. ISP can now have fine granularity control over the traffic distribution across their backbones by carefully overlaying explicit routes over the physical network. The basic traffic engineering problem is how to set up explicit routes to meet bandwidth demands between the edge nodes of the network and at the same time to optimize the network performance. We model the traffic engineering problem as an optimization problem with the objective of minimizing congestion and maximizing potential for traffic growth. We present two mathematical formulations, one linear programming for the case of allowing demand bifurcation and one integer programming for the case of disallowing demand bifurcation. While the bifurcation case can be solved to optimality, we show that the non-bifurcation case is NP-hard. Four heuristic schemes are proposed for the non-bifurcation case, with the most sophisticated one being based on re-routing of split demands in the optimal solution of the bifurcation case. The performance of these heuristic schemes are tested in a large backbone topology. Our results show that shortest-path and minimum hop algorithms, although widely used in current routing protocols, perform poorly, white the re-routing approach performs best