Krylov-Subspace Methods for Reduced-Order Modeling in Circuit Simulation

01 November 2000

New Image

The simulation of electronic circuits involves the numerical solution of very large-scale, sparse, in general nonlinear, systems of differential-algebraic equations. Often, the size of these systems can be reduced considerably by replacing the equations corresponding to linear subcircuits by approximate models of much smaller state-space dimension. In this paper, we describe the use of Krylov-subspace methods for generating such reduced-order models of linear subcircuits. Particular emphasis is on reduced-order modeling techniques that preserve the passivity of linear RLC subcircuits.