Load balancing in heterogeneous networks using an evolutionary algorithm

01 January 2015

New Image

Grammatical Evolution (GE) is applied to the problem of load balancing in heterogeneous cellular network deployments (HetNets). HetNets are multi-tiered cellular networks for which load balancing is a scalable means to maximise network capacity, assuming similar traffic from all users. This paper describes a proof of concept study in which GE is used in a genetic algorithm-like way to evolve constants which represent cell power and selection bias in order to achieve load balancing in HetNets. A fitness metric is derived to achieve load balancing both locally in sectors and globally across tiers. Initial results show promise for GE as a heuristic for load balancing. This finding motivates a more sophisticated grammar to bring enhanced Inter-Cell Interference Coordination optimisation into an evolutionary framework.