Mixing Enhancement due to Viscoelastic Instability in Serpentine Microchannels at Very Large Weissenberg Numbers

31 May 2016

New Image

The flow of shear-thinning viscoelastic fluids is investigated experimentally in a serpentine microchannel at very large Weissenberg numbers (Wi > 104) undergoing elastic instability. The effects of geometric curvature on local flow instability and the consequent heat transfer enhancement are reported. Unlike previous studies where fluids with large zero-shear viscosities (up to 300mPa.s) were used, we employ a working fluid with a lower viscosity (9mPa.s) more suited to microfluidic heat transfer applications while exhibiting viscoelastic characteristics. This results in Elasticity number (EI = Wi/Re) flows an order of magnitude larger than previously reported in the literature with apparent viscosities close to the solvent viscosity under flow conditions. Detailed Micro Particle Image Velocimetry (PIV) measurements reveal the local enhancements due to instantaneous flow structures which result in vigorous local mixing at sub- critical Reynolds numbers. In addition the pressure drop increase is moderate as mixing occurs locally and the flow is maintained undisturbed elsewhere throughout the flow path.