Nonlinear Propagation in Multimode and Multicore Fibers: Generalization of the Manakov Equations
01 February 2013
This paper starts by an investigation of nonlinear transmission in space-division multiplexed (SDM) systems using multimode fibers exhibiting a rapidly varying birefringence. A primary objective is to generalize the Manakov equations, well known in the case of single-mode fibers. We first investigate a reference case where linear coupling among the spatial modes of the fiber is weak and after averaging over birefringence fluctuations, we obtain new Manakov equations for multimode fibers. Such an averaging reduces the number of intermodal nonlinear terms drastically since all four-wave-mixing terms average out. Cross-phase modulation terms still affect multimode transmission but their effectiveness is reduced. We then verify the accuracy of our new Manakov equations by transmitting multiple 114-Gb/s bit streams in the PDM-QPSK format over different modes of a multimode fiber and comparing the numerical results with those obtained by solving the full stochastic equation. The agreement is excellent in all cases studied. A great benefit of the new equations is to reduce the computation time by a factor of 10 or more. Another important feature observed is that birefringence fluctuations improve system performance by reducing the impact of fiber nonlinearities. The extent of improvement depends on the fiber design and how many spatial modes are used for SDM transmission. We investigated both step-index and graded-index multimode fibers and considered up to three spatial modes in each case.