Galerkin-Legendre spectral schemes for nonlinear space fractional Schrödinger equation
01 September 2018
© 2017, Springer Science+Business Media, LLC, part of Springer Nature. In the paper, we first propose a Crank-Nicolson Galerkin-Legendre (CN-GL) spectral scheme for the one-dimensional nonlinear space fractional Schrödinger equation. Convergence with spectral accuracy is proved for the spectral approximation. Further, a Crank-Nicolson ADI Galerkin-Legendre spectral method for the two-dimensional nonlinear space fractional Schrödinger equation is developed. The proposed schemes are shown to be efficient with second-order accuracy in time and spectral accuracy in space which are higher than some recently studied methods. Moreover, some numerical results are demonstrated to justify the theoretical analysis.