Skip to main content

This is how 5G networks will follow their users

This blog is by Volker Held, head of Innovation Marketing at Nokia Networks.

5G massive broadband will offer enough capacity to perform every function users desire - wherever they go, without a drop in speed or connection, and no matter how many people are connected at the same time. Basically, it will be network nirvana for the “I want it now” generation. For example, subscribers will be able to enjoy 8K films in 3D, which is 16 times the pixel count of full HD, while they are on the move. And they’ll be able to download a full movie in a matter of seconds over the mobile network.

Whether deployed in ‘traditional’ frequencies below 6 GHz or in higher frequency bands, new technology will be needed to achieve the necessary peak rates in the range of 10 Gbps and data rates of 100 Mbps anywhere, even under high-load conditions or at the cell edge.

Massive broadband requires massive MIMO

Nokia Networks' new 5G radio systems therefore feature advanced antennas and operate in the bands up to 100 GHz for extreme throughput and virtual zero latency. This year’s Brooklyn 5G Summit showed great advances in 5G radio by already demonstrating 10 Gbps over the air. Active antenna technology that uses a large number of antenna elements is a key technology for 5G massive broadband. Adaptive MIMO (multiple input, multiple output) and beamforming technologies are expected to form a central part of 5G as they greatly enhance coverage and user experience across the whole range of frequency bands.

You can see adaptive MIMO and beamforming for 5G in action here:

Focused power

Beamforming will be an important feature for 5G base stations because high data rates require sufficient signal strength. In particular for higher frequencies, beamforming is considered to be essential in overcoming the high path loss associated with the high frequency. The energy must therefore be concentrated and continuously steered to where user demand is. This means the transmitting power is used much more effectively, and also causes less interference to neighboring cells.

Serving moving targets

With beamforming, the base station transmits its signal into the direction of the receiving terminal instead of into the whole cell. In order to cope with moving terminals, the base station must be able to track the terminal and adaptively steer its beam into the direction of the terminal. Such adaptive beamforming can be implemented with phased array antennas.

A phased array antenna consists of various interconnected individual transmitters. With a variable and intelligent arrangement of the individual transmitters, the resulting antenna pattern achieves high directivity and the resulting beam can be flexibly adjusted to moving users and varying capacity needs.

Seeing is believing

Nokia and Mitsubishi Electric jointly demonstrated these beam steering capabilities at the Brooklyn 5G Summit using a phased array antenna at 3.5 GHz. In the demonstration, the Mitsubishi Electric 3.5 GHz 2D Active Antenna is connected to the Nokia Flexi Base station as a transmitter. This Proof of Concept achieves efficient frequency utilization by forming and multiplexing a plurality of beams using multi-element antenna arrays. The technology can considerably improve propagation of waves by providing multiple paths via a 16-by-16 massive MIMO antenna with beamforming capabilities.

Would you like to experience our demonstrations? Please contact Nokia Networks Solution Experience Center.

You can see 5G radio in action here and find more information on our 5G page here.

Impressions and highlights from the Brooklyn 5G Summit can be viewed in our short video.   

Have you heard? Nokia Networks showcases 5G speed of 10 Gbps with National Instruments at Brooklyn 5G Summit

Please share your thoughts on this topic by replying below – and join the Twitter discussion with @NokiaNetworks using #NetworksPerform #mobilebroadband #5G #IoT #innovation #FutureWorks.

Volker Held

About Volker Held

At Nokia, Volker is combining the technology and business side of innovation. He is a 5G veteran and the co-author of the famous 5G triangle with the three 5G use cases. Volker was leading Nokia’s 5G market development activities for several years. Right from the early days of 5G he has been advocating for the transformative benefits of the technology for enterprises.

Tweet me at @v_held

Article tags